Comparison of Translation Products in vivo and in vitro of Cowpea-Mosaic Virus

1979 ◽  
Vol 7 (5) ◽  
pp. 1085-1085
Author(s):  
R. W. GOLDBACH
PLoS ONE ◽  
2009 ◽  
Vol 4 (11) ◽  
pp. e7981 ◽  
Author(s):  
Maria J. Gonzalez ◽  
Emily M. Plummer ◽  
Chris S. Rae ◽  
Marianne Manchester

Virology ◽  
1969 ◽  
Vol 38 (4) ◽  
pp. 685-693 ◽  
Author(s):  
C.L. Niblett ◽  
J.S. Semancik

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anthony Gobert ◽  
Yifat Quan ◽  
Mathilde Arrivé ◽  
Florent Waltz ◽  
Nathalie Da Silva ◽  
...  

AbstractPlant viruses cause massive crop yield loss worldwide. Most plant viruses are RNA viruses, many of which contain a functional tRNA-like structure. RNase P has the enzymatic activity to catalyze the 5′ maturation of precursor tRNAs. It is also able to cleave tRNA-like structures. However, RNase P enzymes only accumulate in the nucleus, mitochondria, and chloroplasts rather than cytosol where virus replication takes place. Here, we report a biotechnology strategy based on the re-localization of plant protein-only RNase P to the cytosol (CytoRP) to target plant viruses tRNA-like structures and thus hamper virus replication. We demonstrate the cytosol localization of protein-only RNase P in Arabidopsis protoplasts. In addition, we provide in vitro evidences for CytoRP to cleave turnip yellow mosaic virus and oilseed rape mosaic virus. However, we observe varied in vivo results. The possible reasons have been discussed. Overall, the results provided here show the potential of using CytoRP for combating some plant viral diseases.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 963
Author(s):  
Maria C. Holeva ◽  
Athanasios Sklavounos ◽  
Rajendran Rajeswaran ◽  
Mikhail M. Pooggin ◽  
Andreas E. Voloudakis

Cucumber mosaic virus (CMV) is a destructive plant virus with worldwide distribution and the broadest host range of any known plant virus, as well as a model plant virus for understanding plant–virus interactions. Since the discovery of RNA interference (RNAi) as a major antiviral defense, RNAi-based technologies have been developed for plant protection against viral diseases. In plants and animals, a key trigger of RNAi is double-stranded RNA (dsRNA) processed by Dicer and Dicer-like (DCL) family proteins in small interfering RNAs (siRNAs). In the present study, dsRNAs for coat protein (CP) and 2b genes of CMV were produced in vitro and in vivo and applied onto tobacco plants representing a systemic solanaceous host as well as on a local host plant Chenopodium quinoa. Both dsRNA treatments protected plants from local and systemic infection with CMV, but not against infection with unrelated viruses, confirming sequence specificity of antiviral RNAi. Antiviral RNAi was effective when dsRNAs were applied simultaneously with or four days prior to CMV inoculation, but not four days post inoculation. In vivo-produced dsRNAs were more effective than the in vitro-produced; in treatments with in vivo dsRNAs, dsRNA-CP was more effective than dsRNA-2b, while the effects were opposite with in vitro dsRNAs. Illumina sequencing of small RNAs from in vivo dsRNA-CP treated and non-treated tobacco plants revealed that interference with CMV infection in systemic leaves coincides with strongly reduced accumulation of virus-derived 21- and 22-nucleotide (nt) siRNAs, likely generated by tobacco DCL4 and DCL2, respectively. While the 21-nt class of viral siRNAs was predominant in non-treated plants, 21-nt and 22-nt classes accumulated at almost equal (but low) levels in dsRNA treated plants, suggesting that dsRNA treatment may boost DCL2 activity. Taken together, our findings confirm the efficacy of topical application of dsRNA for plant protection against viruses and shed more light on the mechanism of antiviral RNAi.


2006 ◽  
Vol 80 (17) ◽  
pp. 8329-8344 ◽  
Author(s):  
Jamie Ashby ◽  
Emmanuel Boutant ◽  
Mark Seemanpillai ◽  
Adrian Sambade ◽  
Christophe Ritzenthaler ◽  
...  

ABSTRACT The cell-to-cell spread of Tobacco mosaic virus infection depends on virus-encoded movement protein (MP), which is believed to form a ribonucleoprotein complex with viral RNA (vRNA) and to participate in the intercellular spread of infectious particles through plasmodesmata. Previous studies in our laboratory have provided evidence that the vRNA movement process is correlated with the ability of the MP to interact with microtubules, although the exact role of this interaction during infection is not known. Here, we have used a variety of in vivo and in vitro assays to determine that the MP functions as a genuine microtubule-associated protein that binds microtubules directly and modulates microtubule stability. We demonstrate that, unlike MP in whole-cell extract, microtubule-associated MP is not ubiquitinated, which strongly argues against the hypothesis that microtubules target the MP for degradation. In addition, we found that MP interferes with kinesin motor activity in vitro, suggesting that microtubule-associated MP may interfere with kinesin-driven transport processes during infection.


1966 ◽  
Vol 19 (1) ◽  
pp. 140-IN8 ◽  
Author(s):  
Albert Siegel ◽  
G.J. Hills ◽  
Roy Markham

1984 ◽  
Vol 179 (6) ◽  
pp. 507-516 ◽  
Author(s):  
Barbara Pustowoit ◽  
Wladimir Pustowoit ◽  
Gottfried Schuster

Author(s):  
L. van Vloten-Doting ◽  
J. Bol ◽  
L. Neeleman ◽  
T. Rutgers ◽  
D. van Dalen ◽  
...  

2019 ◽  
Vol 109 (9) ◽  
pp. 1648-1657
Author(s):  
Shanshan Liu ◽  
Lifeng Liu ◽  
Miguel A. Aranda ◽  
Bin Peng ◽  
Qinsheng Gu

Cucumber green mottle mosaic virus (CGMMV), a member of the genus Tobamovirus (family Virgaviridae), is an economically important virus that has detrimental effects on cucurbit crops worldwide. Understanding the interaction between host factors and CGMMV viral proteins will facilitate the design of new strategies for disease control. In this study, a yeast two-hybrid assay revealed that the CGMMV helicase (HEL) domain interacts with a Citrullus lanatus small heat shock protein (sHSP), and we verified this observation by performing in vitro GST pull-down and in vivo coimmunoprecipitation assays. Measurement of the levels of accumulated sHSP transcript revealed that sHSP is upregulated on initial CGMMV infection in both Nicotiana benthamiana and C. lanatus plants, although not in the systemically infected leaves. We also found that the subcellular localization of the sHSP was altered after CGMMV infection. To further validate the role of sHSP in CGMMV infection, we produced and assayed N. benthamiana transgenic plants with up- and down-regulated sHSP expression. Overexpression of sHSP inhibited viral RNA accumulation and retarded disease development, whereas sHSP silencing had no marked effect on CGMMV infection. Therefore, we postulate that the identified sHSP may be one of the factors modulating host defense mechanisms in response to CGMMV infection and that the HEL domain interaction may inhibit this sHSP function to promote viral infection.


Sign in / Sign up

Export Citation Format

Share Document