Accumulation of fructosyl-lysine and advanced glycation end products in the kidney, retina and peripheral nerve of streptozotocin-induced diabetic rats

2003 ◽  
Vol 31 (6) ◽  
pp. 1423-1425 ◽  
Author(s):  
N. Karachalias ◽  
R. Babaei-Jadidi ◽  
N. Ahmed ◽  
P.J. Thornalley

The accumulation of AGEs (advanced glycation end products) in diabetes mellitus has been implicated in the biochemical dysfunction associated with the chronic development of microvascular complications of diabetes – nephropathy, retinopathy and peripheral neuropathy. We investigated the concentrations of fructosyl-lysine and AGE residues in protein extracts of renal glomeruli, retina, peripheral nerve and plasma protein of streptozotocin-induced diabetic rats and normal healthy controls. Glycation adducts were determined by LC with tandem MS detection. In diabetic rats, the fructosyl-lysine concentration was increased markedly in glomeruli, retina, sciatic nerve and plasma protein. The concentrations of N∊-carboxymethyl-lysine and N∊-carboxyethyl-lysine were increased in glomeruli, sciatic nerve and plasma protein, and N∊-carboxymethyl-lysine also in the retina. Hydroimidazolone AGEs derived from glyoxal, methylglyoxal and 3-deoxylglucosone were major AGEs quantitatively. They were increased in the retina, nerve, glomeruli and plasma protein. AGE accumulation in renal glomeruli, retina, peripheral nerve and plasma proteins is consistent with a role for AGEs in the development of nephropathy, retinopathy and peripheral neuropathy in diabetes. High-dose therapy with thiamine and Benfotiamine suppressed the accumulation of AGEs, and is a novel approach to preventing the development of diabetic complications.

2021 ◽  
Author(s):  
Rajkishor Nishad ◽  
Tahaseen V Syed ◽  
Manga Motrapu ◽  
Rajesh Kavvuri ◽  
Kiranmayi Kodali ◽  
...  

Abstract Background The prevalence of diabetes reaches epidemic proportions, affecting the incidence of diabetic nephropathy (DN) and associated end-stage kidney disease (ESKD). Diabetes is the leading cause of ESKD since 30–40% of diabetic patients develop DN. Albuminuria and eGFR have been considered a surrogate outcome of chronic kidney disease, and the search for a biomarker that predicts progression to diabetic kidney disease is intense.Methods We analyzed the association of serum advanced glycation end-products (AGEs) index (AGI) with impaired kidney function in uncontrolled diabetic patients (type II, n = 130) with albuminuria ranging from (150 to 450 mg/day). The kidney biopsy specimens were also examined for the association of AGEs, particularly carboxymethyl lysine (CML) with kidney function. Further, we also assessed the effect of carboxymethyl lysine on glomerular injury and podocytopathy in experimental animals.Results We observed a strong correlation between AGI and impaired kidney function in miroalbuminuric patients with hyperglycemia. A significant association between CML levels and impaired kidney function was noticed. Administration of CML in mice showed heavy proteinuria and glomerular abnormalities. Reduced podocyte number observed in mice administered with CML could be attributed to the epithelial-mesenchymal transition (EMT) of podocytes. Conclusion Serum AGEs could be independently related to the podocyte injury vis-a-vis the risk of DN progression to ESKD in patients with microalbuminuria. AGEs or CML could be considered a prognostic marker to assess microalbuminuria progression to ESKD in diabetic patients.


1997 ◽  
Vol 324 (2) ◽  
pp. 565-570 ◽  
Author(s):  
Mahtab U. AHMED ◽  
Elisabeth BRINKMANN FRYE ◽  
Thorsten P. DEGENHARDT ◽  
Suzanne R. THORPE ◽  
John W. BAYNES

Advanced glycation end-products and glycoxidation products, such as Nϵ-(carboxymethyl)lysine (CML) and pentosidine, accumulate in long-lived tissue proteins with age and are implicated in the aging of tissue proteins and in the development of pathology in diabetes, atherosclerosis and other diseases. In this paper we describe a new advanced glycation end-product, Nϵ-(carboxyethyl)lysine (CEL), which is formed during the reaction of methylglyoxal with lysine residues in model compounds and in the proteins RNase and collagen. CEL was also detected in human lens proteins at a concentration similar to that of CML, and increased with age in parallel with the concentration of CML. Although CEL was formed in highest yields during the reaction of methylglyoxal and triose phosphates with lysine and protein, it was also formed in reactions of pentoses, ascorbate and other sugars with lysine and RNase. We propose that levels of CML and CEL and their ratio to one another in tissue proteins and in urine will provide an index of glyoxal and methylglyoxal concentrations in tissues, alterations in glutathione homoeostasis and dicarbonyl metabolism in disease, and sources of advanced glycation end-products in tissue proteins in aging and disease.


Sign in / Sign up

Export Citation Format

Share Document