Effect of the alpha-lipoic acid on apoptosis in HIT-T15 cells induced by high glucose

2010 ◽  
Vol 34 (8) ◽  
pp. S14-S14
Author(s):  
Yi Yang ◽  
Wei‑Ping Wang ◽  
Yi‑Nan Liu ◽  
Ting Guo ◽  
Ping Chen ◽  
...  
2017 ◽  
Vol 42 (5) ◽  
pp. 1897-1906 ◽  
Author(s):  
Kai Dong ◽  
Pengjie Hao ◽  
Sheng Xu ◽  
Shutai Liu ◽  
Wenjuan Zhou ◽  
...  

Background/Aims: Patients with diabetes mellitus have a higher risk of dental implant failure. One major cause is high-glucose induced oxidative stress. Alpha-lipoic acid (ALA), a naturally occurring compound and dietary supplement, has been established as a potent antioxidant that is a strong scavenger of free radicals. However, few studies have yet investigated the effect of ALA on osteogenic differentiation of osteoblasts cultured with high glucose medium. The aim of this study is to investigate the effects of ALA on the osteoblastic differentiation in MC3T3-E1 cells under high glucose condition. Methods: MC3T3-E1 cells were divided into 4 groups including normal glucose (5.5 mM) group (control), high glucose (25.5 mM) group, high glucose + 0.1 mM ALA group, and high glucose + 0.2 mM ALA group. The proliferation, osteogenic differentiation and mineralization of cells were evaluated by MTT assay, alkaline phosphatase (ALP) activity assay, alizarin red staining and real time-polymerase chain reaction. High-glucose induced oxidative damage was also assessed by the production of reactive oxygen species (ROS) and superoxide dismutase (SOD). Western blots were performed to examine the role of PI3K/Akt pathway. Results: The proliferation, osteogenic differentiation and mineralization of MC3T3-E1 cells were significantly decreased by the ROS induced by high-glucose. All observed oxidative damage and osteogenic dysfunction induced were inhibited by ALA. Moreover, the PI3K/Akt pathway was activated by ALA. Conclusions: We demonstrate that ALA may attenuate high-glucose mediated MC3T3-E1 cells dysfunction through antioxidant effect and modulation of PI3K/Akt pathway.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Chuan Lv ◽  
Can Wu ◽  
Yue-hong Zhou ◽  
Ying Shao ◽  
Guan Wang ◽  
...  

The aim of this study was to investigate whether alpha lipoic acid (LA) regulates high glucose-induced mesangial cell proliferation and extracellular matrix production via mTOR/p70S6K/4E-BP1 signaling. The effect of LA on high glucose-induced cell proliferation, fibronectin (FN), and collagen type I (collagen-I) expression and its mechanisms were examined in cultured rat mesangial cells by methylthiazol tetrazolium (MTT) assay, flow cytometry, ELISA assay, and western blot, respectively. LA at a relatively low concentration (0.25 mmol/L) acted as a growth factor in rat mesangial cells, promoted entry of cell cycle into S phase, extracellular matrix formation, and phosphorylated AKT, mTOR, p70S6K, and 4E-BP1. These effects disappeared when AKT expression was downregulated with PI3K/AKT inhibitor LY294002. Conversely, LA at a higher concentration (1.0 mmol/L) inhibited high glucose-induced rat mesangial cell proliferation, entry of cell cycle into S phase, and extracellular matrix exertion, as well as phosphorylation of mTOR, p70S6K, and 4E-BP1 but enhanced the activity of AMPK. However, these effects disappeared when AMPK activity was inhibited with CaMKK inhibitor STO-609. These results suggest that LA dose-dependently regulates mesangial cell proliferation and matrix protein secretion by mTOR/p70S6K/4E-BP1 signaling pathway under high glucose conditions.


2014 ◽  
Vol 30 (3) ◽  
pp. 731-738 ◽  
Author(s):  
Rezvan Najafi ◽  
Ali Mohammad Sharifi ◽  
Asieh Hosseini

2012 ◽  
Vol 84 (7) ◽  
pp. 961-973 ◽  
Author(s):  
Lian-Qing Sun ◽  
Ying-Ying Chen ◽  
Xuan Wang ◽  
Xiao-Jin Li ◽  
Bing Xue ◽  
...  

2013 ◽  
Vol 85 (2) ◽  
pp. 745-752 ◽  
Author(s):  
Jyh-Gang Leu ◽  
Chin-Yao Lin ◽  
Jhin-Hao Jian ◽  
Chin-Yu Shih ◽  
Yao-Jen Liang

The anti-oxidant effects of epigallocatechin gallate (EGCG) and alpha lipoic acid (ALA) have been demonstrated in previous studies. The kidney protection effects of EGCG and ALA in patients with kidney injury are still under investigation. The purpose of this study is to investigate the anti-inflammatory and anti-oxidant effects of EGCG and ALA on high glucose-induced human kidney cell damage. EGCG inhibited high glucose(HG)-induced TNF-α and IL-6 production in human embryonic kidney (HEK) cells. Both EGCG and ALA decreased HG-induced receptor of advanced glycation end products (RAGE) mRNA and protein expressions in HEK cells. EGCG and ALA also recovered HG-inhibited superoxide dismutase production and decreased ROS expressions in HEK cells. The synergism of EGCG and ALA was also studied. The effect of EGCG combined with ALA is greater than the effect of EGCG alone in all anti-inflammation and anti-oxidant experiments. Our studies provide a potential therapeutic application of EGCG and ALA in preventing progression of diabetic nephropathy.


Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
A Uzunovic ◽  
S Hadzidedic ◽  
A Elezovic ◽  
S Pilipovic ◽  
A Sapcanin

2008 ◽  
Vol 46 (05) ◽  
Author(s):  
E Székely ◽  
K Szentmihályi ◽  
M Bor ◽  
Á Pusztai ◽  
T Kurucz ◽  
...  

Diabetes ◽  
1997 ◽  
Vol 46 (9) ◽  
pp. 1481-1490 ◽  
Author(s):  
A. Bierhaus ◽  
S. Chevion ◽  
M. Chevion ◽  
M. Hofmann ◽  
P. Quehenberger ◽  
...  

2017 ◽  
Vol 23 (1-2) ◽  
pp. 9-14
Author(s):  
E.H. Zaremba ◽  
◽  
O.V. Smalyukh ◽  
O.V. Zaremba-Fedchyshyn ◽  
O.V. Zaremba ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document