Meiotic CENP-C is a shepherd: bridging the space between the centromere and the kinetochore in time and space

2020 ◽  
Vol 64 (2) ◽  
pp. 251-261
Author(s):  
Jessica E. Fellmeth ◽  
Kim S. McKim

Abstract While many of the proteins involved in the mitotic centromere and kinetochore are conserved in meiosis, they often gain a novel function due to the unique needs of homolog segregation during meiosis I (MI). CENP-C is a critical component of the centromere for kinetochore assembly in mitosis. Recent work, however, has highlighted the unique features of meiotic CENP-C. Centromere establishment and stability require CENP-C loading at the centromere for CENP-A function. Pre-meiotic loading of proteins necessary for homolog recombination as well as cohesion also rely on CENP-C, as do the main scaffolding components of the kinetochore. Much of this work relies on new technologies that enable in vivo analysis of meiosis like never before. Here, we strive to highlight the unique role of this highly conserved centromere protein that loads on to centromeres prior to M-phase onset, but continues to perform critical functions through chromosome segregation. CENP-C is not merely a structural link between the centromere and the kinetochore, but also a functional one joining the processes of early prophase homolog synapsis to late metaphase kinetochore assembly and signaling.

2020 ◽  
Vol 117 (10) ◽  
pp. 5386-5393 ◽  
Author(s):  
Sara Shahnejat-Bushehri ◽  
Ann E. Ehrenhofer-Murray

The AAA+ ATPase and bromodomain factor ATAD2/ANCCA is overexpressed in many types of cancer, but how it contributes to tumorigenesis is not understood. Here, we report that the Saccharomyces cerevisiae homolog Yta7ATAD2 is a deposition factor for the centromeric histone H3 variant Cse4CENP-A at the centromere in yeast. Yta7ATAD2 regulates the levels of centromeric Cse4CENP-A in that yta7∆ causes reduced Cse4CENP-A deposition, whereas YTA7 overexpression causes increased Cse4CENP-A deposition. Yta7ATAD2 coimmunoprecipitates with Cse4CENP-A and is associated with the centromere, arguing for a direct role of Yta7ATAD2 in Cse4CENP-A deposition. Furthermore, increasing centromeric Cse4CENP-A levels by YTA7 overexpression requires the activity of Scm3HJURP, the centromeric nucleosome assembly factor. Importantly, Yta7ATAD2 interacts in vivo with Scm3HJURP, indicating that Yta7ATAD2 is a cochaperone for Scm3HJURP. The absence of Yta7 causes defects in growth and chromosome segregation with mutations in components of the inner kinetochore (CTF19/CCAN, Mif2CENP-C, Cbf1). Since Yta7ATAD2 is an AAA+ ATPase and potential hexameric unfoldase, our results suggest that it may unfold the Cse4CENP-A histone and hand it over to Scm3HJURP for subsequent deposition in the centromeric nucleosome. Furthermore, our findings suggest that ATAD2 overexpression may enhance malignant transformation in humans by misregulating centromeric CENP-A levels, thus leading to defects in kinetochore assembly and chromosome segregation.


2012 ◽  
Vol 200 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Fabienne Lampert ◽  
Christine Mieck ◽  
Gregory M. Alushin ◽  
Eva Nogales ◽  
Stefan Westermann

Kinetochores are large protein complexes that link sister chromatids to the spindle and transduce microtubule dynamics into chromosome movement. In budding yeast, the kinetochore–microtubule interface is formed by the plus end–associated Dam1 complex and the kinetochore-resident Ndc80 complex, but how they work in combination and whether a physical association between them is critical for chromosome segregation is poorly understood. Here, we define structural elements required for the Ndc80–Dam1 interaction and probe their function in vivo. A novel ndc80 allele, selectively impaired in Dam1 binding, displayed growth and chromosome segregation defects. Its combination with an N-terminal truncation resulted in lethality, demonstrating essential but partially redundant roles for the Ndc80 N-tail and Ndc80–Dam1 interface. In contrast, mutations in the calponin homology domain of Ndc80 abrogated kinetochore function and were not compensated by the presence of Dam1. Our experiments shed light on how microtubule couplers cooperate and impose important constraints on structural models for outer kinetochore assembly.


2008 ◽  
Vol 21 (2) ◽  
pp. 162-170 ◽  
Author(s):  
Mengsheng Gao ◽  
Max Teplitski

Despite significant advances in the development of sensitive tools for studying genetics and signal exchange in legume–rhizobium symbioses, many uncertainties remain about the in vivo role of bacterial and plant signals in symbiotic gene regulation. In this study, we adapted TnpR recombinase-based in vivo expression technology (RIVET) to document gene regulation in Sinorhizobium meliloti. The substrate for TnpR, the res1-tet-res1 cassette, is stably inherited when cloned into a neutral site of the S. meliloti genome. Bicistronic promoterless tnpR-β-glucuronidase (GUS) reporters were constructed to track expression (“resolution”) of symbiotically relevant S. meliloti genes during different stages of the interaction. In proof of principle experiments, the resolution of the nodC::tnpR reporter was detected within 4 h of exposure to micromolar levels of the nod operon inducer luteolin and after overnight incubation in the rhizosphere. RIVET demonstrated that cell division gene ftsZ2 was not strongly expressed in the rhizosphere but was activated inside the nodules and on agar surfaces. Rhizosphere expression of the N-acyl homoserine lactone (AHL) synthase sinI::tnpR-GUS reporter was modest in prequorate microcolonies, and then increased with time. AHL synthase sinI and an AHL-regulated gene, expG, were activated inside the nodules.


Blood ◽  
1999 ◽  
Vol 93 (3) ◽  
pp. 796-803 ◽  
Author(s):  
R. De Maria ◽  
U. Testa ◽  
L. Luchetti ◽  
A. Zeuner ◽  
G. Stassi ◽  
...  

The possible involvement of Fas and Fas ligand (FasL) in the regulation of erythropoiesis was evaluated. Immunohistochemistry of normal bone marrow specimens revealed that several immature erythroblasts undergo apoptosis in vivo. Analysis of bone marrow erythroblasts and purified progenitors undergoing unilineage erythroid differentiation showed that Fas is rapidly upregulated in early erythroblasts and expressed at high levels through terminal maturation. However, Fas crosslinking was effective only in less mature erythroblasts, particularly at basophilic level, where it induced apoptosis antagonized by high levels of erythropoietin (Epo). In contrast, FasL was selectively induced in late differentiating Fas-insensitive erythroblasts, mostly at the orthochromatic stage. FasL is functional in mature erythroblasts, as it was able to kill Fas-sensitive lymphoblast targets in a Fas-dependent manner. Importantly, FasL-bearing mature erythroblasts displayed a Fas-based cytotoxicity against immature erythroblasts, which was abrogated by high levels of Epo. These findings suggest the existence of a negative regulatory feedback between mature and immature erythroid cells, whereby the former cell population might exert a cytotoxic effect on the latter one in the erythroblastic island. Hypothetically, this negative feedback operates at low Epo levels to moderate the erythropoietic rate; however, it is gradually inhibited at increasing Epo concentrations coupled with enhanced erythrocyte production. Thus, the interaction of Fas and FasL may represent an apoptotic control mechanism for erythropoiesis, contributing to the regulation of red blood cell homeostasis.


2019 ◽  
Author(s):  
N Cortes-Silva ◽  
J Ulmer ◽  
T Kiuchi ◽  
E Hsieh ◽  
G Cornilleau ◽  
...  

AbstractAccurate chromosome segregation requires assembly of the multiprotein kinetochore complex at centromeres. In most eukaryotes, kinetochore assembly is primed by the histone H3 variant CenH3, which physically interacts with components of the inner kinetochore constitutive-centromere-associated-network (CCAN). Unexpected to its critical function, previous work identified that select eukaryotic lineages, including several insects, have lost CenH3, while having retained homologs of the CCAN. These findings imply alternative CCAN assembly pathways in these organisms that function in CenH3-independent manners. Here, we study the composition and assembly of CenH3-deficient kinetochores of Lepidoptera (butterflies and moths). We show that lepidopteran kinetochores consist of previously identified CCAN homologs as well as additional components including a divergent CENP-T homolog, which are required for accurate mitotic progression. Our study focuses on CENP-T that we find both necessary and sufficient to recruit the Mis12 outer kinetochore complex. In addition, CRISPR-mediated gene editing in Bombyx mori establishes an essential function of CENP-T in vivo. Finally, the retention of CENP-T homologs in other independently-derived CenH3-deficient insects indicates a conserved mechanism of kinetochore assembly between these lineages. Our study provides the first functional insights into CCAN-based kinetochore assembly pathways that function independently of CenH3, thus contributing to the emerging picture of an unexpected plasticity to build a kinetochore.


Author(s):  
Weifeng Xu ◽  
Beibei Chen ◽  
Dianshan Ke ◽  
Xiaobing Chen

CD142 is expressed on the surface of multiple malignant tumors and contributes to various carcinogenesis. However, the role of CD142 in the pathogenesis of GAC remains unclear. This study aimed to investigate the role of CD142 in GAC carcinogenesis. Our results showed that CD142 expression was significantly increased in GAC cancer tissues, especially in those with significant invasion or metastasis. The invasion and migration of CD142-positive SNU16 cells were significantly increased compared with those of CD142-negative cells. Moreover, CD142 overexpression promoted the invasion and migration of SGC083 cells, but CD142 silencing was contrary. In addition, there was a positive correlation between CD142 expression of cancer tissues and serum IL-8 levels. CD142 overexpression promotes IL-8 production in SGC083 cells. In vivo analysis showed that the implantation of CD142-positive SNU16 cells promoted the growth of xenograft tumor and the production of IL-8. Mechanistically, CD142 silencing not only inhibited the expression of BCL2 and the interaction between BCL2 and Beclin1, but also promoted the autophagic response in SGC083. Furthermore, CD142 silencing-induced IL-8 degradation was recovered by treatment of autophagy inhibitor 3-MA. CD142 can inhibit autophagic cell death and the autophagic degradation of IL-8 in GAC, which exerts an effective effect on GAC carcinogenesis.


2016 ◽  
Vol 136 (7) ◽  
pp. 1471-1478 ◽  
Author(s):  
Katrin Rietscher ◽  
Annika Wolf ◽  
Gerd Hause ◽  
Annekatrin Rother ◽  
René Keil ◽  
...  

2007 ◽  
Vol 104 (18) ◽  
pp. 7699-7704 ◽  
Author(s):  
Andreas Friebe ◽  
Evanthia Mergia ◽  
Oliver Dangel ◽  
Alexander Lange ◽  
Doris Koesling

The signaling molecule nitric oxide (NO), first described as endothelium-derived relaxing factor (EDRF), acts as physiological activator of NO-sensitive guanylyl cyclase (NO-GC) in the cardiovascular, gastrointestinal, and nervous systems. Besides NO-GC, other NO targets have been proposed; however, their particular contribution still remains unclear. Here, we generated mice deficient for the β1 subunit of NO-GC, which resulted in complete loss of the enzyme. GC-KO mice have a life span of 3–4 weeks but then die because of intestinal dysmotility; however, they can be rescued by feeding them a fiber-free diet. Apparently, NO-GC is absolutely vital for the maintenance of normal peristalsis of the gut. GC-KO mice show a pronounced increase in blood pressure, underlining the importance of NO in the regulation of smooth muscle tone in vivo. The lack of an NO effect on aortic relaxation and platelet aggregation confirms NO-GC as the only NO target regulating these two functions, excluding cGMP-independent mechanisms. Our knockout model completely disrupts the NO/cGMP signaling cascade and provides evidence for the unique role of NO-GC as NO receptor.


Sign in / Sign up

Export Citation Format

Share Document