scholarly journals Validation of a Novel Wearable Electromyography Patch for Monitoring Submental Muscle Activity During Swallowing: A Randomized Crossover Trial

2020 ◽  
Vol 63 (10) ◽  
pp. 3293-3310
Author(s):  
Cagla Kantarcigil ◽  
Min Ku Kim ◽  
Taehoo Chang ◽  
Bruce A. Craig ◽  
Anne Smith ◽  
...  

Purpose Surface electromyography (sEMG) is often used for biofeedback during swallowing rehabilitation. However, commercially available sEMG electrodes are not optimized for the head and neck area, have rigid form, and are mostly available in large medical centers. We developed an ultrathin, soft, and flexible sEMG patch, specifically designed to conform to the submental anatomy and which will be ultimately incorporated into a telehealth system. To validate this first-generation sEMG patch, we compared its safety, efficiency, and signal quality in monitoring submental muscle activity with that of widely used conventional sEMG electrodes. Method A randomized crossover design was used to compare the experimental sEMG patch with conventional (snap-on) sEMG electrodes. Participants completed the same experimental protocol with both electrodes in counterbalanced order. Swallow trials included five trials of 5- and 10-ml water. Comparisons were made on (a) signal-related factors: signal-to-noise ratio (SNR), baseline amplitude, normalized mean amplitude, and sEMG burst duration and (b) safety/preclinical factors: safety/adverse effects, efficiency of electrode placement, and satisfaction/comfort. Noninferiority and equivalence tests were used to examine signal-related factors. Paired t tests and descriptive statistics were used to examine safety/preclinical factors. Results Forty healthy adults participated (24 women, M age = 67.5 years). Signal-related factors: SNR of the experimental patch was not inferior to the SNR of the conventional electrodes ( p < .0056). Similarly, baseline amplitude obtained with the experimental patch was not inferior to that obtained with conventional electrodes ( p < .0001). Finally, normalized amplitude values were equivalent across swallows (5 ml: p < .025; 10 ml: p < .0012), and sEMG burst duration was also equivalent (5 ml: p < .0001; 10 ml: p < .0001). Safety/preclinical factors: The experimental patch resulted in fewer mild adverse effects. Participant satisfaction was higher with the experimental patch ( p = .0476, d = 0.226). Conclusions Our new wearable sEMG patch is equivalent with widely used conventional sEMG electrodes in terms of technical performance. In addition, our patch is safe, and healthy older adults are satisfied with it. With lessons learned from the current COVID-19 pandemic, efforts to develop optimal swallowing telerehabilitation devices are more urgent than ever. Upon further validation, this new technology has the potential to improve rehabilitation and telerehabilitation efforts for patients with dysphagia. Supplemental Material https://doi.org/10.23641/asha.12915509

2019 ◽  
Vol 18 (1-2) ◽  
pp. 101-128
Author(s):  
Mair E. Lloyd ◽  
James Robson

Abstract Between 2000 and 2013, over 8,000 students studied the module Reading Classical Latin at the Open University, the United Kingdom’s largest distance education provider. But while many learners attained high grades, a significant proportion withdrew from study or failed the module. In 2015, the original module was replaced with a completely new course, Classical Latin: The Language of Ancient Rome. This article details the innovative ways in which new technology and pedagogical theory from Modern Foreign Language (MFL) learning were drawn on by the team designing this new module, resulting in a learning experience which gives greater emphasis to elements such as spoken Latin, the intrinsic pleasure of reading, and cultural context. The (largely positive) effects of these pedagogical changes on student success and satisfaction are subsequently analysed using a rich mix of qualitative and quantitative data. Finally, the authors reflect on lessons learned and the possibilities for future research and enhancement.


2021 ◽  
Author(s):  
Mohd Hafizi Ariffin ◽  
Muhammad Idraki M Khalil ◽  
Abdullah M Razali ◽  
M Iman Mostaffa

Abstract Most of the oil fields in Sarawak has already producing more than 30 years. When the fields are this old, the team is most certainly facing a lot of problems with aging equipment and facilities. Furthermore, the initial stage of platform installation was not designed to accommodate a large space for an artificial lift system. Most of these fields were designed with gas lift compressors, but because of the space limitation, the platforms can only accommodate a limited gas lift compressor capacity due to space constraints. Furthermore, in recent years, some of the fields just started with their secondary recovery i.e. water, gas injection where the fluid gradient became heavier due to GOR drop or water cut increases. With these limitations and issues, the team needs to be creative in order to prolong the fields’ life with various artificial lift. In order to push the limits, the team begins to improve gas lift distribution among gas lifted wells in the field. This is the cheapest option. Network model recommends the best distribution for each gas lifted wells. Gas lifted wells performance highly dependent on fluid weight, compressor pressure, and reservoir pressure. The change of these parameters will impact the production of these wells. Rigorous and prudent data acquisitions are important to predict performance. Some fields are equipped with pressure downhole gauges, wellhead pressure transmitters, and compressor pressure transmitters. The data collected is continuous and good enough to be used for analysis. Instead of depending on compressor capacity, a high-pressure gas well is a good option for gas lift supply. The issues are to find gas well with enough pressure and sustainability. Usually, this was done by sacrificing several barrels of oil to extract the gas. Electrical Submersible Pump (ESP) is a more expensive option compared to a gas lift method. The reason is most of these fields are not designed to accommodate ESP electricity and space requirements. Some equipment needs to be improved before ESP installation. Because of this, the team were considering new technology such as Thru Tubing Electrical Submersible Pump (TTESP) for a cheaper option. With the study and implementation as per above, the fields able to prolong its production until the end of Production Sharing Contract (PSC). This proactive approach has maintained the fields’ production with The paper seeks to present on the challenges, root cause analysis and the lessons learned from the subsequent improvement activities. The lessons learned will be applicable to oil fields with similar situations to further improve the fields’ production.


2021 ◽  
Author(s):  
Siti Najmi Farhan binti Zulkipli

Abstract Addressing wellbore integrity through cement evaluation has been an evergreen topic which frequently catches major operators by surprise due to premature water or gas breakthrough causing low production attainability from the wells. Managing idle well strings arising from integrity issues is also a challenge throughout the production period. The remedial solutions to these issues do not come conveniently and require high cost during late life well intervention which often erodes the well economic limit. A critical element of wellbore barrier which is cement integrity evaluation is proposed to be uplifted and given a new perspective to define success criteria for producer wells to achieve certain reserves addition and production recovery. This paper will highlight integrated factors affecting cement bond quality, impact to well production, potential remedies for poor cement bond observed leveraging on the enhanced workflow and new technology and way forward to proactively prevent the unwanted circumstances in the first opportunity taken. A set of recommendations and prioritization criteria for future cement improvement will be also highlighted. Several case specific wells logged with variable cement bond evaluation tools are re-assessed and deep-dived to trace the root causes for unsatisfactory cement bond quality observed which include reservoir characteristics, understanding anomalies during drilling and cementing operation, identifying cement recipe used, log processing parameters applied and observing best practices during cementing operation to improve the quality. New and emerging cement evaluation technology inclusive of radioactive-based logging to meet specific well objectives will be also briefly discussed in terms of differences and technical deliverables. Looking at each spectrum, results show that there are several interdependent factors contributing to poor cement bond quality observed. Accurate understanding of formation behavior, designing fit-for-purpose cement recipe and adequate planning for cementing operation on well-by-well basis are among the top- notch approaches to be applied for an acceptable cement bond quality and placement. Statistics show that 27% to 64% of production attainability is achieved by wells with good cement quality within the first 3 months of production and this increases to 85% to 98% up until 7 months of production period, while only 12% production attainability achieved for those wells with adverse cement quality issue. In another well, water cut as high as 47% since the first day of production is observed which keeps increasing up to 40% thereafter. In a nutshell, cement evaluation exercise shall not be treated as vacuum, instead it requires an integrated foundation and close collaboration to materialize the desired outcomes. Arresting the issue with the right approach in the first place will be the enabler for optimum well performance and productivity to exceed the recovery target.


2010 ◽  
Vol 3 (1) ◽  
Author(s):  
Lizzy Bleumers ◽  
Kris Naessens ◽  
An Jacobs

This article introduces Proxy Technology Assessment (PTA) as a methodological approach that can widen the scope of virtual world and game research. Studies of how people experience virtual worlds and games often focus on individual in-world or in-game experiences. However, people do not perceive these worlds and games in isolation. They are embedded within a social context that has strongly intertwined online and offline components. Studying virtual experiences while accounting for these interconnections calls for new methodological approaches. PTA answers this call.Combining several methods, PTA can be used to investigate how new technology may impact and settle within people's everyday life (Pierson et al., 2006). It involves introducing related devices or applications, available today, to users in their natural setting and studying the context-embedded practices they alter or evoke. This allows researchers to detect social and functional requirements to improve the design of new technologies. These requirements, like the practices under investigation, do not stop at the outlines of a magic circle (cf. Huizinga, 1955).We will start this article by contextualizing and defining PTA. Next, we will describe the practical implementation of PTA. Each step of the procedure will be illustrated with examples and supplemented with lessons learned from two interdisciplinary scientific projects, Hi-Masquerade and Teleon, concerned with how people perceive and use virtual worlds and games respectively.


Author(s):  
Mark S. Denton ◽  
Josh Mertz

On March 11, 2011, now two years ago, the magnitude 9.0 Great East Japan earth quake, Tohoku, hit off the Fukushima coast of Japan. This was one of the most powerful earthquakes in recorded history and the most powerful one known to have hit Japan. The ensuing tsunami devastated a huge area resulting in some 25,000 persons confirmed dead or missing. The perfect storm was complete when the tsunami then found the four-reactor, Fukushima-Daiichi Nuclear Station directly in its destructive path. Some 2 million people were evacuated from a fifty mile radius of the area and evaluation and cleanup began. A tremendous effort has been made, by many nationalities, since this time to restore this damaged plant and surrounding area and to return a great deal of the residents to their homes and farm lands. While most of the outcome of this unprecedented natural and manmade disaster was negative, both in Japan and worldwide, there have been some extremely valuable lessons learned and new emergency recovery technologies and systems developed to cope with the aftermath of this disaster. This paper describes new technology developed to selectively remove radioactive materials dangerous to workers, local citizens, and the natural environment from seawater used to cool the damaged reactors at Fukushima. As always, the mother of invention is necessity.


2002 ◽  
Vol 88 (3) ◽  
pp. 1177-1184 ◽  
Author(s):  
R. H. Westgaard ◽  
P. Bonato ◽  
K. A. Holte

The surface electromyographic (EMG) signal from right and left trapezius muscles and the heart rate were recorded over 24 h in 27 healthy female subjects. The root-mean-square (RMS) value of the surface EMG signals and the heartbeat interval time series were calculated with a time resolution of 0.2 s. The EMG activity during sleep showed long periods with stable mean amplitude, modulated by rhythmic components in the frequency range 0.05–0.2 Hz. The ratio between the amplitude of the oscillatory components and the mean amplitude of the EMG signal was approximately constant over the range within which the phenomenon was observed, corresponding to a peak-to-peak oscillatory amplitude of ∼10% of the mean amplitude. The duration of the periods with stable mean amplitude ranged from a few minutes to ∼1 h, usually interrupted by a sudden change in the activity level or by cessation of the muscle activity. Right and left trapezius muscles presented the same pattern of FM. In supplementary experiments, rhythmic muscle activity pattern was also demonstrated in the upper extremity muscles of deltoid, biceps, and forearm flexor muscles. There was no apparent association between the rhythmic components in the muscle activity pattern and the heart rate variability. To our knowledge, this is the first time that the above-described pattern of EMG activity during sleep is documented. On reanalysis of earlier recorded trapezius motor unit firing pattern in experiments on awake subjects in a situation with mental stress, low-FM of firing with similar frequency content was detected. Possible sources of rhythmic excitation of trapezius motoneurons include slow-wave cortical oscillations represented in descending cortico-spinal pathways, and/or activation by monoaminergic pathways originating in the brain stem reticular formation. The analysis of muscle activity patterns may provide an important new tool to study neural mechanisms in human sleep.


2011 ◽  
Vol 366 (1572) ◽  
pp. 1879-1888 ◽  
Author(s):  
Meike Shedden Mora ◽  
Yvonne Nestoriuc ◽  
Winfried Rief

This comprehensive review provides an overview about placebo and nocebo phenomena in antidepressant trials. Improvements in the placebo groups may partly be explained through methodological issues such as natural course of depression and regression to the mean, but also fundamentally reflect investigators' and participants' expectations. A meta-analysis by our group of 96 randomized placebo-controlled trials showed large placebo responses to antidepressant medication. Moderator analyses revealed substantially larger placebo responses in observer ratings compared with self-report. Effect sizes in observer ratings showed strong increase with publication year while this effect was not found for patients' self-ratings. This reflects the strong influence of investigators' expectations. The analysis of ‘nocebo effects’, e.g. adverse effects in placebo groups of antidepressant trials also confirms the impact of expectations: nocebo symptoms reflected the typical side-effect patterns expected in the drug group, with higher symptoms rates in the placebo groups of tricyclic antidepressant trials compared with placebo groups of trials testing selective serotonin reuptake inhibitors. While the placebo response seems to be similar for women and men, gender differences were found for nocebo rates. In the conclusion, we discuss potential implications for clinical trial designs and argue for interventions aimed at optimizing positive expectations of treatment benefit while minimizing the impact of adverse effects.


2019 ◽  
Vol 27 (1) ◽  
pp. 66-82
Author(s):  
Beste Ozyurt ◽  
Irem Dikmen ◽  
M. Talat Birgonul

Purpose In the global construction industry, experience gained in various countries is a major source of competitive advantage. By transferring the knowledge gained in previous projects using an effective knowledge management strategy, they can increase their competitiveness by adopting best practices and by not repeating the same mistakes under similar conditions. The purpose of this paper is to demonstrate how similar countries can be clustered to facilitate learning in global markets. Design/methodology/approach Initially, country factors that can affect success in international projects and can be used to assess the similarity of markets were identified by an extensive literature review and prioritised by a web-based questionnaire. A country evaluation form was prepared to collect country-specific data to be used in the cluster analysis of 39 countries where the Turkish contractors have been frequently working since the last 45 years. Cluster analysis was performed with SPSS 23.0. Findings Three country clusters were obtained and validated. Ultimately, how obtained country clusters may be used to facilitate learning from international construction projects was demonstrated by using an illustrative example. Research limitations/implications The findings depend on the experience and perspective of Turkish contractors doing business abroad. Thus, the identified clusters are not generic. Moreover, country clusters were not identified considering only the country factors such as economy, culture, politics, etc.; thus, countries in the same cluster do not necessarily represent “similar” countries in terms of macro-factors. Clusters were identified so that the lessons learned can be effectively transferred within the same cluster considering construction and project-related factors as well as country-related factors. Although the findings cannot be generalised and clusters are not static, it is believed that the methodology used in this research is repeatable for different countries considering different timeframes. Originality/value Theoretical contributions include the identification of factors that can be used for similarity assessment of countries for transferring lessons learned as well as a methodology for clustering. Findings may also have a practical value for the Turkish contractors.


Author(s):  
Julian Yamaura ◽  
Stephen T. Muench ◽  
Kim Willoughby

This paper presents a case study of the organizational change process associated with the Washington State Department of Transportation (WSDOT) year-long research program that implemented a cloud-based mobile project inspection application to 18 project engineering offices (PEO) across the state. Ultimately, four out of the 18 PEOs decided to adopt the new technology. Data from semi-structured interviews and a user study conducted two months after implementation are used to identify organizational change strategies used by WSDOT, and how those relate to ideas from the general literature on change management. The loss of upper management program leaders, inadequate communication and training to prepare personnel for the change, and policy and procedural uncertainties in integrating the change with other systems and operations were found to be factors that may have influenced the outcome of the program. While this paper focuses on one DOT’s efforts, other DOTs may have similar organizational structures and implementation efforts, and the findings and lessons learned could serve as a representative model for how such implementation might best be accomplished in a DOT and how that might differ from traditional change management guidance.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5267
Author(s):  
Javier Garcia-Casado ◽  
Gema Prats-Boluda ◽  
Yiyao Ye-Lin ◽  
Sebastián Restrepo-Agudelo ◽  
Estefanía Perez-Giraldo ◽  
...  

Surface electromyography (sEMG) can be helpful for evaluating swallowing related muscle activity. Conventional recordings with disc electrodes suffer from significant crosstalk from adjacent muscles and electrode-to-muscle fiber orientation problems, while concentric ring electrodes (CREs) offer enhanced spatial selectivity and axial isotropy. The aim of this work was to evaluate CRE performance in sEMG recordings of the swallowing muscles. Bipolar recordings were taken from 21 healthy young volunteers when swallowing saliva, water and yogurt, first with a conventional disc and then with a CRE. The signals were characterized by the root-mean-square amplitude, signal-to-noise ratio, myopulse, zero-crossings, median frequency, bandwidth and bilateral muscle cross-correlations. The results showed that CREs have advantages in the sEMG analysis of swallowing muscles, including enhanced spatial selectivity and the associated reduction in crosstalk, the ability to pick up a wider range of EMG frequency components and easier electrode placement thanks to its radial symmetry. However, technical changes are recommended in the future to ensure that the lower CRE signal amplitude does not significantly affect its quality. CREs show great potential for improving the clinical monitoring and evaluation of swallowing muscle activity. Future work on pathological subjects will assess the possible advantages of CREs in dysphagia monitoring and diagnosis.


Sign in / Sign up

Export Citation Format

Share Document