scholarly journals Insecticide resistance in the aphid Myzus persicae (Sulzer): chromosome location and epigenetic effects on esterase gene expression in clonal lineages

2003 ◽  
Vol 79 (1) ◽  
pp. 107-113 ◽  
Author(s):  
LINDA M. FIELD ◽  
ROGER L. BLACKMAN
1988 ◽  
Vol 251 (1) ◽  
pp. 309-312 ◽  
Author(s):  
L M Field ◽  
A L Devonshire ◽  
B G Forde

cDNA clones for the esterase (E4) responsible for broad insecticide resistance in peach-potato aphids (Myzus persicae Sulz.) were isolated and used to study the molecular basis of resistance. Increased esterase synthesis by resistant aphids was found to be associated with amplification of the structural gene for the esterase (E4 or its closely related variant, FE4), the degree of amplification being correlated with the activity of the esterase and the level of resistance. Hybridization of the cDNA clones to genomic Southern blots showed that only some of the esterase-related restriction fragments are amplified. Qualitative differences between restriction patterns in different clones of resistant aphids correlated with the presence or absence of a specific chromosome translocation and with production of E4 or FE4.


1977 ◽  
Vol 167 (3) ◽  
pp. 675-683 ◽  
Author(s):  
Alan L. Devonshire

Carboxylesterases from different strains of Myzus persicae were examined to try to understand their contribution to insecticide resistance. Preliminary evidence that they are involved comes from the good correlation between the degree of resistance and the carboxylesterase and paraoxon-degrading activity in aphid homogenates. Furthermore the carboxylesterase associated with resistance could not be separated from the insecticide-degrading enzyme by electrophoresis or ion-exchange chromatography. Homogenates of resistant aphids hydrolysed paraoxon 60 times faster than did those of susceptible aphids, yet the purified enzymes from both sources had identical catalytic-centre activities towards this substrate and also towards naphth-1-yl acetate, the latter being hydrolysed by both 2×106 times faster than paraoxon. These observations provide evidence that the enzyme from both sources is identical, and that one enzyme hydrolyses both substrates. This was confirmed by relating the rate of paraoxon hydrolysis to the rate at which paraoxon-inhibited carboxylesterase re-activated. Both had the same first-order rate constant (0.01min−1), showing clearly that the hydrolysis of both substrates is brought about by the same enzyme. Its Km for naphth-1-yl acetate was 0.131mm, and for paraoxon 75pm. The latter very small value could not be measured directly, but was calculated from substrate-competition studies coupled with measurements of re-activation of the diethyl phosphorylated enzyme. Since the purified enzymes from resistant and susceptible aphids had the same catalytic-centre activity, the 60-fold difference between strains must be caused by different amounts of the same enzyme resulting from mutations of the regulator gene(s) rather than of the structural gene.


Author(s):  
Romika Kumari ◽  
Muntasir Mamun Majumder ◽  
Juha Lievonen ◽  
Raija Silvennoinen ◽  
Pekka Anttila ◽  
...  

Abstract Background Esterase enzymes differ in substrate specificity and biological function and may display dysregulated expression in cancer. This study evaluated the biological significance of esterase expression in multiple myeloma (MM). Methods For gene expression profiling and evaluation of genomic variants in the Institute for Molecular Medicine Finland (FIMM) cohort, bone marrow aspirates were obtained from patients with newly diagnosed MM (NDMM) or relapsed/refractory MM (RRMM). CD138+ plasma cells were enriched and used for RNA sequencing and analysis, and to evaluate genomic variation. The Multiple Myeloma Research Foundation (MMRF) Relating Clinical Outcomes in MM to Personal Assessment of Genetic Profile (CoMMpass) dataset was used for validation of the findings from FIMM. Results MM patients (NDMM, n = 56; RRMM, n = 78) provided 171 bone marrow aspirates (NDMM, n = 56; RRMM, n = 115). Specific esterases exhibited relatively high or low expression in MM, and expression of specific esterases (UCHL5, SIAE, ESD, PAFAH1B3, PNPLA4 and PON1) was significantly altered on progression from NDMM to RRMM. High expression of OVCA2, PAFAH1B3, SIAE and USP4, and low expression of PCED1B, were identified as poor prognostic markers (P < 0.05). The MMRF CoMMpass dataset provided validation that higher expression of PAFAH1B3 and SIAE, and lower expression of PCED1B, were associated with poor prognosis. Conclusions Esterase gene expression levels change as patients progress from NDMM to RRMM. High expression of OVCA2, PAFAH1B3, USP4 and SIAE, and low expression of PCED1B, are poor prognostic markers in MM, suggesting a role for these esterases in myeloma biology.


1998 ◽  
Vol 7 (4) ◽  
pp. 307-315 ◽  
Author(s):  
S. H. P. P. Karunaratne ◽  
A. Vaughan ◽  
M. G. Paton ◽  
J. Hemingway

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Juliano Rodrigues Sangalli ◽  
Rafael Vilar Sampaio ◽  
Maite del Collado ◽  
Juliano Coelho da Silveira ◽  
Tiago Henrique Camara De Bem ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document