scholarly journals A genome-wide strategy for the identification of essential genes in Staphylococcus aureus

2002 ◽  
Vol 43 (6) ◽  
pp. 1387-1400 ◽  
Author(s):  
R. Allyn Forsyth ◽  
Robert J. Haselbeck ◽  
Kari L. Ohlsen ◽  
Robert T. Yamamoto ◽  
Howard Xu ◽  
...  
2014 ◽  
Vol 42 (15) ◽  
pp. 9838-9853 ◽  
Author(s):  
Saeed Kaboli ◽  
Takuya Yamakawa ◽  
Keisuke Sunada ◽  
Tao Takagaki ◽  
Yu Sasano ◽  
...  

Abstract Despite systematic approaches to mapping networks of genetic interactions in Saccharomyces cerevisiae, exploration of genetic interactions on a genome-wide scale has been limited. The S. cerevisiae haploid genome has 110 regions that are longer than 10 kb but harbor only non-essential genes. Here, we attempted to delete these regions by PCR-mediated chromosomal deletion technology (PCD), which enables chromosomal segments to be deleted by a one-step transformation. Thirty-three of the 110 regions could be deleted, but the remaining 77 regions could not. To determine whether the 77 undeletable regions are essential, we successfully converted 67 of them to mini-chromosomes marked with URA3 using PCR-mediated chromosome splitting technology and conducted a mitotic loss assay of the mini-chromosomes. Fifty-six of the 67 regions were found to be essential for cell growth, and 49 of these carried co-lethal gene pair(s) that were not previously been detected by synthetic genetic array analysis. This result implies that regions harboring only non-essential genes contain unidentified synthetic lethal combinations at an unexpectedly high frequency, revealing a novel landscape of genetic interactions in the S. cerevisiae genome. Furthermore, this study indicates that segmental deletion might be exploited for not only revealing genome function but also breeding stress-tolerant strains.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. e02250-20
Author(s):  
Kathrin Stelzner ◽  
Ann-Cathrin Winkler ◽  
Chunguang Liang ◽  
Aziza Boyny ◽  
Carsten P. Ade ◽  
...  

ABSTRACTThe opportunistic human pathogen Staphylococcus aureus causes serious infectious diseases that range from superficial skin and soft tissue infections to necrotizing pneumonia and sepsis. While classically regarded as an extracellular pathogen, S. aureus is able to invade and survive within human cells. Host cell exit is associated with cell death, tissue destruction, and the spread of infection. The exact molecular mechanism employed by S. aureus to escape the host cell is still unclear. In this study, we performed a genome-wide small hairpin RNA (shRNA) screen and identified the calcium signaling pathway as being involved in intracellular infection. S. aureus induced a massive cytosolic Ca2+ increase in epithelial host cells after invasion and intracellular replication of the pathogen. This was paralleled by a decrease in endoplasmic reticulum Ca2+ concentration. Additionally, calcium ions from the extracellular space contributed to the cytosolic Ca2+ increase. As a consequence, we observed that the cytoplasmic Ca2+ rise led to an increase in mitochondrial Ca2+ concentration, the activation of calpains and caspases, and eventually to cell lysis of S. aureus-infected cells. Our study therefore suggests that intracellular S. aureus disturbs the host cell Ca2+ homeostasis and induces cytoplasmic Ca2+ overload, which results in both apoptotic and necrotic cell death in parallel or succession.IMPORTANCE Despite being regarded as an extracellular bacterium, the pathogen Staphylococcus aureus can invade and survive within human cells. The intracellular niche is considered a hideout from the host immune system and antibiotic treatment and allows bacterial proliferation. Subsequently, the intracellular bacterium induces host cell death, which may facilitate the spread of infection and tissue destruction. So far, host cell factors exploited by intracellular S. aureus to promote cell death are only poorly characterized. We performed a genome-wide screen and found the calcium signaling pathway to play a role in S. aureus invasion and cytotoxicity. The intracellular bacterium induces a cytoplasmic and mitochondrial Ca2+ overload, which results in host cell death. Thus, this study first showed how an intracellular bacterium perturbs the host cell Ca2+ homeostasis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
J. Christopher Noone ◽  
Marc Stegger ◽  
Berit Lilje ◽  
Knut Stavem ◽  
Karin Helmersen ◽  
...  

Abstract A retrospective study of Staphylococcus aureus isolates from orthopaedic patients treated between 2000 and 2017 at Akershus University Hospital, Norway was performed using a genome-wide association approach. The aim was to characterize and investigate molecular characteristics unique to S. aureus isolates from HHA associated prosthetic joint infections and potentially explain the HHA patients’ elevated 1-year mortality compared to a non-HHA group. The comparison group consisted of patients with non-HHA lower-extremity implant-related S. aureus infections. S. aureus isolates from diagnostic patient samples were whole-genome sequenced. Univariate and multivariate analyses were performed to detect group-associated genetic signatures. A total of 62 HHA patients and 73 non-HHA patients were included. Median age (81 years vs. 74 years; p < 0.001) and 1-year mortality (44% vs. 15%, p < 0.001) were higher in the HHA group. A total of 20 clonal clusters (CCs) were identified; 75% of the isolates consisted of CC45, CC30, CC5, CC15, and CC1. Analyses of core and accessory genome content, including virulence, resistance genes, and k-mer analysis revealed few group-associated variants, none of which could explain the elevated 1-year mortality in HHA patients. Our findings support the premise that all S. aureus can cause invasive infections given the opportunity.


2018 ◽  
Author(s):  
Bernadette C Young ◽  
Sarah G Earle ◽  
Sona Soeng ◽  
Poda Sar ◽  
Varun Kumar ◽  
...  

AbstractPyomyositis is a severe bacterial infection of skeletal muscle, commonly affecting children in tropical regions and predominantly caused by Staphylococcus aureus. To understand the contribution of bacterial genomic factors to pyomyositis, we conducted a genome-wide association study of S. aureus cultured from 101 children with pyomyositis and 417 children with asymptomatic nasal carriage attending the Angkor Hospital for Children in Cambodia. We found a strong relationship between bacterial genetic variation and pyomyositis, with estimated heritability 63.8% (95% CI 49.2-78.4%). The presence of the Panton-Valentine leucocidin (PVL) locus increased the odds of pyomyositis 130-fold (p =10-17.9). The signal of association mapped both to the PVL-coding sequence and the sequence immediately upstream. Together these regions explained > 99.9% of heritability. Our results establish staphylococcal pyomyositis, like tetanus and diphtheria, as critically dependent on expression of a single toxin and demonstrate the potential for association studies to identify specific bacterial genes promoting severe human disease.


2012 ◽  
Vol 329 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Jia Meng ◽  
Gregory Kanzaki ◽  
Diane Meas ◽  
Christopher K. Lam ◽  
Heather Crummer ◽  
...  

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Bernadette C Young ◽  
Sarah G Earle ◽  
Sona Soeng ◽  
Poda Sar ◽  
Varun Kumar ◽  
...  

Pyomyositis is a severe bacterial infection of skeletal muscle, commonly affecting children in tropical regions, predominantly caused by Staphylococcus aureus. To understand the contribution of bacterial genomic factors to pyomyositis, we conducted a genome-wide association study of S. aureus cultured from 101 children with pyomyositis and 417 children with asymptomatic nasal carriage attending the Angkor Hospital for Children, Cambodia. We found a strong relationship between bacterial genetic variation and pyomyositis, with estimated heritability 63.8% (95% CI 49.2–78.4%). The presence of the Panton–Valentine leucocidin (PVL) locus increased the odds of pyomyositis 130-fold (p=10-17.9). The signal of association mapped both to the PVL-coding sequence and to the sequence immediately upstream. Together these regions explained over 99.9% of heritability (95% CI 93.5–100%). Our results establish staphylococcal pyomyositis, like tetanus and diphtheria, as critically dependent on a single toxin and demonstrate the potential for association studies to identify specific bacterial genes promoting severe human disease.


mBio ◽  
2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Madeleine G. Moule ◽  
Claudia M. Hemsley ◽  
Qihui Seet ◽  
José Afonso Guerra-Assunção ◽  
Jiali Lim ◽  
...  

ABSTRACT Burkholderia pseudomallei is the causative agent of melioidosis, an often fatal infectious disease for which there is no vaccine. B. pseudomallei is listed as a tier 1 select agent, and as current therapeutic options are limited due to its natural resistance to most antibiotics, the development of new antimicrobial therapies is imperative. To identify drug targets and better understand the complex B. pseudomallei genome, we sought a genome-wide approach to identify lethal gene targets. As B. pseudomallei has an unusually large genome spread over two chromosomes, an extensive screen was required to achieve a comprehensive analysis. Here we describe transposon-directed insertion site sequencing (TraDIS) of a library of over 106 transposon insertion mutants, which provides the level of genome saturation required to identify essential genes. Using this technique, we have identified a set of 505 genes that are predicted to be essential in B. pseudomallei K96243. To validate our screen, three genes predicted to be essential, pyrH, accA, and sodB, and a gene predicted to be nonessential, bpss0370, were independently investigated through the generation of conditional mutants. The conditional mutants confirmed the TraDIS predictions, showing that we have generated a list of genes predicted to be essential and demonstrating that this technique can be used to analyze complex genomes and thus be more widely applied. IMPORTANCE Burkholderia pseudomallei is a lethal human pathogen that is considered a potential bioterrorism threat and has limited treatment options due to an unusually high natural resistance to most antibiotics. We have identified a set of genes that are required for bacterial growth and thus are excellent candidates against which to develop potential novel antibiotics. To validate our approach, we constructed four mutants in which gene expression can be turned on and off conditionally to confirm that these genes are required for the bacteria to survive.


Sign in / Sign up

Export Citation Format

Share Document