Large-scale structure in the Lyman-alpha forest: a new technique

1998 ◽  
Vol 301 (3) ◽  
pp. 787-796 ◽  
Author(s):  
J. Liske ◽  
J. K. Webb ◽  
R. F. Carswell
2020 ◽  
Vol 46 (6) ◽  
pp. 359-369
Author(s):  
M. I. Demiański ◽  
A. G. Doroshkevich ◽  
T. I. Larchenkova

2020 ◽  
Vol 642 ◽  
pp. L1
Author(s):  
Marco Mignoli ◽  
Roberto Gilli ◽  
Roberto Decarli ◽  
Eros Vanzella ◽  
Barbara Balmaverde ◽  
...  

We report on the spectroscopic confirmation of a large-scale structure around the luminous z = 6.31 quasi-stellar object (QSO) SDSS J1030+0524, powered by a one billion solar mass black hole. The structure is populated by at least six members, namely, four Lyman-break galaxies (LBGs), and two Lyman alpha emitters (LAEs). The four LBGs were identified among a sample of 21 i-band dropouts with zAB <  25.5 selected up to projected separations of 5 physical Mpc (15 arcmin) from the QSO. Their redshifts were determined through multi-object spectroscopic observations at 8−10 m class telescopes lasting up to eight hours. The two LAEs were identified in a 6 h VLT/MUSE observation centered on the QSO. The redshifts of the six galaxies cover the range between 6.129−6.355. Assuming that the peculiar velocities are negligible, this range corresponds to radial separations of ±5 physical Mpc from the QSO, that is comparable to the projected scale of the observed LBG distribution on the sky. We conservatively estimate that this structure is significant at a level > 3.5σ and that the level of the galaxy overdensity is at least 1.5−2 within the large volume sampled (∼780 physical Mpc3). The spectral properties of the six member galaxies (Lyα strength and UV luminosity) are similar to those of field galaxies at similar redshifts. This is the first spectroscopic identification of a galaxy overdensity around a supermassive black hole in the first billion years of the Universe. Our finding lends support to the idea that the most distant and massive black holes form and grow within massive (>1012 M⊙) dark matter halos in large-scale structures and that the absence of earlier detections of such systems is likely due to observational limitations.


2014 ◽  
Vol 59 (1) ◽  
pp. 79-92
Author(s):  
Alexander Becker

Wie erlebt der Hörer Jazz? Bei dieser Frage geht es unter anderem um die Art und Weise, wie Jazz die Zeit des Hörens gestaltet. Ein an klassischer Musik geschultes Ohr erwartet von musikalischer Zeitgestaltung, den zeitlichen Rahmen, der durch Anfang und Ende gesetzt ist, von innen heraus zu strukturieren und neu zu konstituieren. Doch das ist keine Erwartung, die dem Jazz gerecht wird. Im Jazz wird der Moment nicht im Hinblick auf ein Ziel gestaltet, das von einer übergeordneten Struktur bereitgestellt wird, sondern so, dass er den Bewegungsimpuls zum nächsten Moment weiterträgt. Wie wirkt sich dieses Prinzip der Zeitgestaltung auf die musikalische Form im Großen aus? Der Aufsatz untersucht diese Frage anhand von Beispielen, an denen sich der Weg der Transformation von einer klassischen zu einer dem Jazz angemessenen Form gut nachverfolgen lässt.<br><br>How do listeners experience Jazz? This is a question also about how Jazz music organizes the listening time. A classically educated listener expects a piece of music to structure, unify and thereby re-constitute the externally given time frame. Such an expectation is foreign to Jazz music which doesn’t relate the moment to a goal provided by a large scale structure. Rather, one moment is carried on to the next, preserving the stimulus potentially ad infinitum. How does such an organization of time affect the large scale form? The paper tries to answer this question by analyzing two examples which permit to trace the transformation of a classical form into a form germane to Jazz music.


Author(s):  
Marta B. Silva ◽  
Ely D. Kovetz ◽  
Garrett K. Keating ◽  
Azadeh Moradinezhad Dizgah ◽  
Matthieu Bethermin ◽  
...  

AbstractThis paper outlines the science case for line-intensity mapping with a space-borne instrument targeting the sub-millimeter (microwaves) to the far-infrared (FIR) wavelength range. Our goal is to observe and characterize the large-scale structure in the Universe from present times to the high redshift Epoch of Reionization. This is essential to constrain the cosmology of our Universe and form a better understanding of various mechanisms that drive galaxy formation and evolution. The proposed frequency range would make it possible to probe important metal cooling lines such as [CII] up to very high redshift as well as a large number of rotational lines of the CO molecule. These can be used to trace molecular gas and dust evolution and constrain the buildup in both the cosmic star formation rate density and the cosmic infrared background (CIB). Moreover, surveys at the highest frequencies will detect FIR lines which are used as diagnostics of galaxies and AGN. Tomography of these lines over a wide redshift range will enable invaluable measurements of the cosmic expansion history at epochs inaccessible to other methods, competitive constraints on the parameters of the standard model of cosmology, and numerous tests of dark matter, dark energy, modified gravity and inflation. To reach these goals, large-scale structure must be mapped over a wide range in frequency to trace its time evolution and the surveyed area needs to be very large to beat cosmic variance. Only a space-borne mission can properly meet these requirements.


Sign in / Sign up

Export Citation Format

Share Document