Lithofacies and eruption ages of Late Cretaceous caldera volcanoes in the Himeji-Yamasaki district, southwest Japan: Implications for ancient large-scale felsic arc volcanism

Island Arc ◽  
2003 ◽  
Vol 12 (3) ◽  
pp. 294-309 ◽  
Author(s):  
Takahiro Yamamoto
Island Arc ◽  
2009 ◽  
Vol 19 (2) ◽  
pp. 357-370 ◽  
Author(s):  
Hiroshi Mori ◽  
Simon Wallis
Keyword(s):  

2021 ◽  
Author(s):  
◽  
James McClintock

<p>The Glenburn Formation of the East Coast of New Zealand is a Late Cretaceous sedimentary formation consisting of alternating layers of sandstone, mudstone and conglomerate. The Glenburn Formation spans a depositional timeframe of over 10 Ma, is over 1000 m thick, is regionally extensive and is possibly present over large areas offshore. For these reasons, it is important to constrain the paleoenvironment of this unit.  Late Cretaceous paleogeographic reconstructions of the East Coast Basin are, however, hampered by a number of factors, including the pervasive Neogene to modern tectonic deformation of the region, the poorly understood nature of the plate tectonic regime during the Cretaceous, and a lack of detailed sedimentological studies of most of the region’s Cretaceous units. Through detailed mapping of the Glenburn Formation, this study aims to improve inferences of regional Cretaceous depositional environments and paleogeography.  Detailed facies based analysis was undertaken on several measured sections in eastern Wairarapa and southern Hawke’s Bay. Information such as bed thickness, grain size and sedimentary structures were recorded in order to identify distinct facies. Although outcrop is locally extensive, separate outcrop localities generally lie in different thrust blocks, which complicates comparisons of individual field areas and prevents construction of the large-scale, three-dimensional geometry of the Glenburn Formation.  Glenburn Formation consists of facies deposited by sediment gravity flows that were primarily turbidity currents and debris flows. Facies observed are consistent with deposition on a prograding submarine fan system. There is significant variation in facies both within and between sections. Several distinct submarine fan architectural components are recognised, such as fan fringes, fan lobes, submarine channels and overbank deposits. Provenance and paleocurrent indicators are consistent with deposition having occurred on several separate submarine fans, and an integrated regional paleogeographic reconstruction suggests that deposition most likely occurred in a fossil trench following the mid-Cretaceous cessation of subduction along the Pacific-facing margin of Gondwana.</p>


2021 ◽  
Author(s):  
Hilmar von Eynatten ◽  
Jonas Kley ◽  
István Dunkl

&lt;p&gt;Large parts of Central Europe have experienced exhumation in Late Cretaceous to Paleogene time. Previous studies mainly focused on thrusted basement uplifts to unravel magnitude, processes and timing of exhumation. In this study we present a comprehensive thermochronological dataset from mostly Permo-Triassic strata exposed adjacent to and between the major basement uplifts in central Germany, comprising an area of at least some 250-300 km across. Results of apatite fission track and (U-Th)/He analyses from &gt;100 new samples reveal that (i) km-scale exhumation affected the entire region, suggesting long-wavelength domal uplift, (ii) thrusting of basement blocks like the Harz Mountains and the Thuringian Forest focused in the Late Cretaceous (about 90-70 Ma) while superimposed domal uplift of central Germany appears slightly younger (about 75-55 Ma), and (iii) large parts of the domal uplift experienced removal of 3 to 4 km of Mesozoic strata. Using spatial extent, magnitude and timing as constraints we find that thrusting and crustal thickening alone can account for no more than half of the domal uplift. Most likely, dynamic topography caused by upwelling asthenosphere has contributed significantly to the observed pattern of exhumation in central Germany.&lt;/p&gt;


2021 ◽  
Author(s):  
Steffen Kutterolf ◽  
Armin Freundt ◽  
Thor H. Hansteen ◽  
Rebecca Dettbarn ◽  
Fabian Hampel ◽  
...  

&lt;p&gt;The Hellenic arc hosts several active volcanic centers, of which the Milos, Santorini-Kolumbo and Kos-Yali-Nisyros volcanic fields present particularly high threats due to recent unrest (2011-2012 and 1996-1997 at Santorini and Nisyros, respectively). These volcanic centers have repeatedly produced highly explosive eruptions (VEI 4 to 7) from ~360 ka into historic times. The marine tephra record provides information not only on the number of events, but also on their magnitudes and intensities inferred from tephra dispersal characteristics, and is thus essential to quantitatively assess future volcanic hazards and risks.&lt;/p&gt;&lt;p&gt;Here we complement earlier work on distal to ultra-distal east-Mediterranean sediment cores, which captured the largest eruptions. We present results from a grid of medial to distal sediment cores collected in 2017 during RV Poseidon cruise POS513 with core positions both comparatively close to and between the three volcanic fields, in order to record medium- to large-scale eruptions.&lt;/p&gt;&lt;p&gt;During this cruise, 47 gravity cores up to 7.4 m long, and 3 box cores of the uppermost 0.5 m sediment were recovered, which contain more than 220 primary ash layers. The compositions of glass shards from all layers were characterized by major (EMP) and trace-element (LA-ICPMS) analyses.&lt;/p&gt;&lt;p&gt;Geochemical fingerprinting supports correlations with 20 eruptions from all three volcanic fields as well as with the 39 ka Campanian ignimbrite eruption from the Campi Flegrei, Italy. Correlations with eleven eruptions from Santorini-Kolumbo (Kameni, Kolumbo 1650, Minoan, Cape Riva, Cape Tripiti, Upper Scoria 1 and 2, Middle Pumice, Cape Thera, Lower Pumice, Cape Therma 3) are established, and we newly identify two widespread tephras from eruptions on Milos (Lower and Upper Firiplaka). We have probably been able to solve some previous chronostratigraphic problems at Kos-Yali-Nisyros by correlating marine tephras with the Kos Plateau Tuff, and with the Yali 2 tephra, whereby we identify a second, less evolved facies produced by that eruption that has not yet been recognized on land. We also find tephras from four eruptions on Nisyros (Nisyros 1 to 4) including the previously established Lower (Nisyros 4) and Upper (Nisyros1) Nisyros Pumice eruptions.&lt;/p&gt;&lt;p&gt;These correlations also provide new age constraints for hitherto poorly or non-dated Aegean tephras based on sedimentation rates derived between multiple anchor points of dated terrestrial tephra ages. We deduce ages of ~22 ka and ~36 ka for Upper and Lower Firiplaka tephras from Milos (the latter overlying the Campanian ash) which are significantly younger than other eruption ages known from Milos, ~54 ka, ~62 ka, ~69 ka, and ~76 ka for the Nisyros 1 to 4 tephras, and ~52 ka for the Yali 1 tephra as well as a verified age of 33 ka for the Yali 2 tephra with its two contemporaneous facies.&lt;/p&gt;&lt;p&gt;These new tephrostratigraphic results help to improve quantifications of distribution and eruption characteristics for all these eruptions, and provide important pre-site survey data for the Santorini IODP proposal VolTecArc.&lt;/p&gt;


2007 ◽  
Vol 167 (1-4) ◽  
pp. 160-180 ◽  
Author(s):  
Katsuya Kaneko ◽  
Hiroki Kamata ◽  
Takehiro Koyaguchi ◽  
Masako Yoshikawa ◽  
Kuniyuki Furukawa

Sign in / Sign up

Export Citation Format

Share Document