Importance of genetic characterization and conservation of plant genetic resources: The breeding system and genetic diversity of wild soybean (Glycine soja)

2002 ◽  
Vol 17 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Masashi Ohara ◽  
Yoshiya Shimamoto
2017 ◽  
Vol 71 ◽  
pp. 87-96 ◽  
Author(s):  
Muhammad Amjad Nawaz ◽  
Seung Hwan Yang ◽  
Hafiz Mamoon Rehman ◽  
Faheem Shehzad Baloch ◽  
Jeong Dong Lee ◽  
...  

Author(s):  
Paula Bramel ◽  

This chapter reviews the key issues and challenges facing genebanks in preserving crop genetic diversity ex situ. Local crop genetic diversity is challenged with changes in land use, urbanization, land degradation, changes in agricultural practises, availability of improved varieties, changes in market preference, and the impact of climate change. Efforts have been made to secure plant genetic resources ex situ for future use but there are significant issues related to cost effective, efficient, secure, rational, and sustainable long-term ex situ conservation. It begins by addressing issues for the composition of ex situ collections and moves on to discuss issues for routine operations for conservation. The chapter also highlights issues for the use of conserved genetic resources, before concluding with a summary of why the development of sustainable genebank systems is so important.


2018 ◽  
Vol 69 (11) ◽  
pp. 1126
Author(s):  
Yuya Takahashi ◽  
Xiang-Hua Li ◽  
Chigen Tsukamoto ◽  
Ke-Jing Wang

Saponin chemical composition was phenotyped and genotyped, and saponin composition-based geographical genetic diversity and differentiation were evaluated in Chinese wild soybean (Glycine soja Sieb. & Zucc.). Thirty-two phenotypes and 34 genotypes were confirmed from 3805 wild soybean accessions. Eleven phenotypes (AaαK, AaαIK, AaαIJK, AaBcEαJ, AaBcαK, AbEαIJ, AbαK, AbαIK, AbαIJK, AbβHAb and Aβ0) were newly detected. Four genes had frequencies: Sg-1a 78.8% and Sg-1b 21.0% at the Sg-1 locus; Sg-4 30.7% and Sg-6e 13.7% at their respective loci. The north-eastern and southern populations showed high genetic diversity; the Northeast region contained more novel variants (AuAe, A0, A0Bc, αH, αI αJ, αK, and AbβHAb), and the southern populations contained high frequencies of the Sg-4 gene. Gene differentiation (Fst) analysis suggested that Sg-4 and four group-α saponin alleles or genes (Sg-6e, Sg-6h, Sg-6i, Sg-6j) were important factors influencing the genetic structure and differentiation in Chinese wild soybeans. Geographical differentiation was characterised mainly by latitudinal differences, with two primary groups (north and south) based on saponin genes. Chinese wild soybean accessions differed from Japanese and South Korean ones in genetic structure based on saponin composition, the latter two being likely to have spread from southern China in the glacial stages during the last Ice Age.


2010 ◽  
Vol 8 (2) ◽  
pp. 171-181 ◽  
Author(s):  
C. C. M. van de Wiel ◽  
T. Sretenović Rajičić ◽  
R. van Treuren ◽  
K. J. Dehmer ◽  
C. G. van der Linden ◽  
...  

Genetic variation in Lactuca serriola, the closest wild relative of cultivated lettuce, was studied across Europe from the Czech Republic to the United Kingdom, using three molecular marker systems, simple sequence repeat (SSR, microsatellites), AFLP and nucleotide-binding site (NBS) profiling. The ‘functional’ marker system NBS profiling, targeting disease resistance genes of the NBS/LRR family, did not show marked differences in genetic diversity parameters to the other systems. The autogamy of the species resulted in low observed heterozygosity and high population differentiation. Intra-population variation ranged from complete homogeneity to nearly complete heterogeneity. The highest genetic diversity was found in central Europe. The SSR results were compared to SSR variation screened earlier in the lettuce collection of the Centre for Genetic Resources, the Netherlands (CGN). In the UK, practically only a single SSR genotype was found. This genotype together with a few other common SSR genotypes comprised a large part of the plants sampled on the continent. Among the ten most frequent SSR genotypes observed, eight were already present in the CGN collection. Overall, the CGN collection appears to already have a fair representation of genetic variation from NW Europe. The results are discussed in relation to sampling strategies for improving genebank collections of crop wild relatives.


2003 ◽  
Vol 1 (1) ◽  
pp. 19-29 ◽  
Author(s):  
Toby Hodgkin ◽  
V. Ramanatha Rao ◽  
Angélica Cibrian-Jaramillo ◽  
Samy Gaiji

AbstractPlant genetic resources are conserved so that they can be used to improve crop plant pro- duction and in other ways. However, it is often asserted that use of ex situ conserved germplasm is inadequate and that genetic diversity maintained in genebanks is underutilized. In part, this reflects an incomplete recognition of what constitutes use of plant genetic resources, and of the many different ways in which material from genebanks contributes to improved agricultural production. Based on recent information from surveys of distribution of germplasm from genebanks, and from surveys of users, we suggest that the evidence indicates that there is substantial use of ex situ conserved materials for a wide range of different uses. We suggest that barriers to use of ex situ conserved germplasm may often result from a lack in numbers of users, and from limitations in capacity to effectively utilize the genetic diversity present in genebanks to reduce genetic vulnerability and increase sustainability in modern production systems.


2021 ◽  
Author(s):  
HALIL IBRAHIM OZTURK ◽  
Veysel Dönderalp ◽  
Hüseyin Bulut ◽  
Recep Korkut ◽  
Arash HOSSEINPOUR ◽  
...  

Abstract Background Plant genetic resources constitute the most valuable assets of countries. It is of great importance to determine the genetic variation among these resources and to use the data in breeding studies. Cucurbita maxima species in the cucurbitaceae family have high genetic diversity, but its genetic diversity at the molecular level is inadequately characterized. Methods and Results To determine the genetic diversity among genotypes of Cucurbita maxima species of squash, which is widely grown in Erzincan, 14 different squash genotypes collected were examined based on the morphological parameters and molecular characteristics. SSR (Simple sequence repeat) markers were used to determine genetic diversity at the molecular level. The analysis of morphological characterization within genotypes showed a wide variability in morphological traits of plant, flower, fruit, and leaf. Seven SSR markers yielded a total of 23 polymorphic bands, the number of alleles per marker ranged from 2 to 5, and the mean number of alleles was 3.286. Polymorphic information content (PIC) ranged from 0.00 (GMT-M61) to 0.202 (GMT-P25), and the mean PIC value per marker was 0.130. Cluster analysis using Nei's genetic distance determined that 14 genotypes were divided into 3 major groups. Conclusions The SSR markers used were effective in distinguish among similar winter squash or pumpkin and therefore can be beneficial for consideration of Cucurbita maxima species diversity, screening of genetic resources and their selection.


Sign in / Sign up

Export Citation Format

Share Document