The relative contribution of nitric oxide, vasodilator prostanoids and atp-sensitive potassium channels to metabolic vasodilation in the human forearm

2003 ◽  
Vol 12 (2) ◽  
pp. A62
Author(s):  
H.M. Omar Farouque ◽  
Stephen G. Worthley ◽  
Ian T. Meredith
2003 ◽  
Vol 284 (6) ◽  
pp. H2405-H2411 ◽  
Author(s):  
H. M. Omar Farouque ◽  
Ian T. Meredith

Isolated ATP-sensitive K+(KATP) channel inhibition with glibenclamide does not alter exercise-induced forearm metabolic vasodilation. Whether forearm metabolic vasodilation would be influenced by KATP channel inhibition in the setting of impaired nitric oxide (NO)- and prostanoid-mediated vasodilation is unknown. Thirty-seven healthy subjects were recruited. Forearm blood flow (FBF) was assessed using venous occlusion plethysmography, and functional hyperemic blood flow (FHBF) was induced by isotonic wrist exercise. Infusion of N G-monomethyl-l-arginine(l-NMMA), aspirin, or the combination reduced resting FBF compared with vehicle ( P < 0.05). Addition of glibenclamide to l-NMMA, aspirin, or the combination did not further reduce resting FBF. l-NMMA decreased peak FHBF by 26%, and volume was restored after 5 min ( P < 0.05). Aspirin reduced peak FHBF by 13%, and volume repaid after 5 min ( P < 0.05). Coinfusion of l-NMMA and aspirin reduced peak FHBF by 21% ( P < 0.01), and volume was restored after 5 min ( P < 0.05). Addition of glibenclamide to l-NMMA and aspirin did not further decrease FHBF. Vascular KATP channel blockade with glibenclamide does not affect resting FBF or FHBF in the setting of NO and vasodilator prostanoid inhibition.


Author(s):  
Beata Modzelewska ◽  
Krzysztof Drygalski ◽  
Tomasz Kleszczewski ◽  
Andrzej Chomentowski ◽  
Krzysztof Koryciński ◽  
...  

1996 ◽  
Vol 76 (1) ◽  
pp. 49-67 ◽  
Author(s):  
K. K. Deal ◽  
S. K. England ◽  
M. M. Tamkun

The cardiac action potential results from the complex, but precisely regulated, movement of ions across the sarcolemmal membrane. Potassium channels represent the most diverse class of ion channels in heart and are the targets of several antiarrhythmic drugs. Potassium currents in the myocardium can be classified into one of two general categories: 1) inward rectifying currents such as IK1, IKACh, and IKATP; and 2) primarily voltage-gated currents such as IKs, IKr, IKp, IKur, and Ito. The inward rectifier currents regulate the resting membrane potential, whereas the voltage-activated currents control action potential duration. The presence of these multiple, often overlapping, outward currents in native cardiac myocytes has complicated the study of individual K+ channels; however, the application of molecular cloning technology to these cardiovascular K+ channels has identified the primary structure of these proteins, and heterologous expression systems have allowed a detailed analysis of the function and pharmacology of a single channel type. This review addresses the progress made toward understanding the complex molecular physiology of K+ channels in mammalian myocardium. An important challenge for the future is to determine the relative contribution of each of these cloned channels to cardiac function.


2002 ◽  
Vol 20 (3) ◽  
pp. 493-499 ◽  
Author(s):  
Kim van der Zander ◽  
Alphons J. H. M. Houben ◽  
Abraham A. Kroon ◽  
Jo G. R. De Mey ◽  
Paul A. B. M. Smits ◽  
...  

2014 ◽  
pp. n/a-n/a ◽  
Author(s):  
Mario A. Isiordia-Espinoza ◽  
Amaury Pozos-Guillén ◽  
José Pérez-Urizar ◽  
Daniel Chavarría-Bolaños

Sign in / Sign up

Export Citation Format

Share Document