Improved IAMB with Expanded Markov Blanket for High-Dimensional Time Series Prediction

2016 ◽  
Vol 25 (2) ◽  
pp. 264-269 ◽  
Author(s):  
Xianglin Yang ◽  
Hong Yan ◽  
Hongbo Wang ◽  
Shaohua Tan ◽  
Yunhai Tong ◽  
...  
2017 ◽  
Vol 90 (3) ◽  
pp. 1785-1806 ◽  
Author(s):  
Jia-Chen Hua ◽  
Farzad Noorian ◽  
Duncan Moss ◽  
Philip H. W. Leong ◽  
Gemunu H. Gunaratne

2021 ◽  
Vol 256 ◽  
pp. 02038
Author(s):  
Xin Ji ◽  
Haifeng Zhang ◽  
Jianfang Li ◽  
Xiaolong Zhao ◽  
Shouchao Li ◽  
...  

In order to improve the prediction accuracy of high-dimensional data time series, a high-dimensional data multivariate time series prediction method based on deep reinforcement learning is proposed. The deep reinforcement learning method is used to solve the time delay of each variable and mine the data characteristics. According to the principle of maximum conditional entropy, the embedding dimension of the phase space is expanded, and a multivariate time series model of high-dimensional data is constructed. Thus, the conversion of reconstructed coordinates from low-dimensional to high-dimensional can be kept relatively stable. The strong independence and low redundancy of the final reconstructed phase space construct an effective model input vector for multivariate time series forecasting. Numerical experiments of classical multivariable chaotic time series show that the method proposed in this paper has better forecasting effect, which shows the forecasting effectiveness of this method.


Author(s):  
Muhammad Faheem Mushtaq ◽  
Urooj Akram ◽  
Muhammad Aamir ◽  
Haseeb Ali ◽  
Muhammad Zulqarnain

It is important to predict a time series because many problems that are related to prediction such as health prediction problem, climate change prediction problem and weather prediction problem include a time component. To solve the time series prediction problem various techniques have been developed over many years to enhance the accuracy of forecasting. This paper presents a review of the prediction of physical time series applications using the neural network models. Neural Networks (NN) have appeared as an effective tool for forecasting of time series.  Moreover, to resolve the problems related to time series data, there is a need of network with single layer trainable weights that is Higher Order Neural Network (HONN) which can perform nonlinearity mapping of input-output. So, the developers are focusing on HONN that has been recently considered to develop the input representation spaces broadly. The HONN model has the ability of functional mapping which determined through some time series problems and it shows the more benefits as compared to conventional Artificial Neural Networks (ANN). The goal of this research is to present the reader awareness about HONN for physical time series prediction, to highlight some benefits and challenges using HONN.


2019 ◽  
Vol 15 (2) ◽  
pp. 647-659 ◽  
Author(s):  
Zahra Moeini Najafabadi ◽  
Mehdi Bijari ◽  
Mehdi Khashei

Purpose This study aims to make investment decisions in stock markets using forecasting-Markowitz based decision-making approaches. Design/methodology/approach The authors’ approach offers the use of time series prediction methods including autoregressive, autoregressive moving average and artificial neural network, rather than calculating the expected rate of return based on distribution. Findings The results show that using time series prediction methods has a significant effect on improving investment decisions and the performance of the investments. Originality/value In this study, in contrast to previous studies, the alteration in the Markowitz model started with the investment expected rate of return. For this purpose, instead of considering the distribution of returns and determining the expected returns, time series prediction methods were used to calculate the future return of each asset. Then, the results of different time series methods replaced the expected returns in the Markowitz model. Finally, the overall performance of the method, as well as the performance of each of the prediction methods used, was examined in relation to nine stock market indices.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 141
Author(s):  
Jacob Hale ◽  
Suzanna Long

Energy portfolios are overwhelmingly dependent on fossil fuel resources that perpetuate the consequences associated with climate change. Therefore, it is imperative to transition to more renewable alternatives to limit further harm to the environment. This study presents a univariate time series prediction model that evaluates sustainability outcomes of partial energy transitions. Future electricity generation at the state-level is predicted using exponential smoothing and autoregressive integrated moving average (ARIMA). The best prediction results are then used as an input for a sustainability assessment of a proposed transition by calculating carbon, water, land, and cost footprints. Missouri, USA was selected as a model testbed due to its dependence on coal. Of the time series methods, ARIMA exhibited the best performance and was used to predict annual electricity generation over a 10-year period. The proposed transition consisted of a one-percent annual decrease of coal’s portfolio share to be replaced with an equal share of solar and wind supply. The sustainability outcomes of the transition demonstrate decreases in carbon and water footprints but increases in land and cost footprints. Decision makers can use the results presented here to better inform strategic provisioning of critical resources in the context of proposed energy transitions.


2021 ◽  
Vol 181 ◽  
pp. 973-980
Author(s):  
Leonardo Sestrem de Oliveira ◽  
Sarah Beatriz Gruetzmacher ◽  
João Paulo Teixeira

Sign in / Sign up

Export Citation Format

Share Document