scholarly journals Analysis of the security and privacy risks and challenges in smart cities’ traffic light system

Author(s):  
B. Asad ◽  
N. Saxena ◽  
V. Katos
2020 ◽  
Vol 9 (2) ◽  
pp. 26 ◽  
Author(s):  
João Cunha ◽  
Nelson Batista ◽  
Carlos Cardeira ◽  
Rui Melicio

This paper presents a traffic light system based on wireless communication that provides a support infrastructure for intelligent control in the context of smart cities and aerotropolis areas. An aerotropolis is a metropolitan subregion with an infrastructure centered an airport. Traffic intensity is increasing all over the world. Intelligent dynamic traffic light system control is being sought to replace classic conventional manual and time-based systems. In this work, a wireless sensor network is designed and implemented to feed real-time data into an intelligent traffic light system control. A physical prototype is implemented for experimental validation outside the laboratory environment. The physical prototype shows robustness against unexpected issues and local failures. The results are positive in terms of the scope of experience gained, and there is potential for these tests to be extended to larger areas.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 326 ◽  
Author(s):  
Ashutosh Dwivedi ◽  
Gautam Srivastava ◽  
Shalini Dhar ◽  
Rajani Singh

Medical care has become one of the most indispensable parts of human lives, leading to a dramatic increase in medical big data. To streamline the diagnosis and treatment process, healthcare professionals are now adopting Internet of Things (IoT)-based wearable technology. Recent years have witnessed billions of sensors, devices, and vehicles being connected through the Internet. One such technology—remote patient monitoring—is common nowadays for the treatment and care of patients. However, these technologies also pose grave privacy risks and security concerns about the data transfer and the logging of data transactions. These security and privacy problems of medical data could result from a delay in treatment progress, even endangering the patient’s life. We propose the use of a blockchain to provide secure management and analysis of healthcare big data. However, blockchains are computationally expensive, demand high bandwidth and extra computational power, and are therefore not completely suitable for most resource-constrained IoT devices meant for smart cities. In this work, we try to resolve the above-mentioned issues of using blockchain with IoT devices. We propose a novel framework of modified blockchain models suitable for IoT devices that rely on their distributed nature and other additional privacy and security properties of the network. These additional privacy and security properties in our model are based on advanced cryptographic primitives. The solutions given here make IoT application data and transactions more secure and anonymous over a blockchain-based network.


2021 ◽  
Vol 11 (4) ◽  
pp. 4913-4930
Author(s):  
Akshat Goyal ◽  
Mugdha S Kulkarni

Home automation is now extremely common in Internet of things services and devices with a range of assurances to improve health, lifestyle, and customer wellbeing. In terms of its success and apparent utility for humans, intelligent homes possess various safety concerns resulting from the diversified, vast-range, and nuanced nature of IoT. Previous studies have talked about security and privacy issues. However, we observe that they have not addressed the risk assessment of each smart home component and corresponding security objective along with additional factors that affect a smart home security posture. In this study, we have proposed a framework defining a standard level of security and then analyzing each component concerning it. There are so many vulnerabilities, but all cannot be assessed due to the heterogeneity of devices and their connection in a small network. IoT can support a wide range of technologies and programs in various domains, including smart cities and smart houses. For monitoring, data exchange, and other operations in the given service, IoT smart objects communicate with other elements such as proxies, mobile devices, and data collectors. While such components help solve various social issues and provide consumers with modern advanced services, their restricted computing capacities render them vulnerable to well-known protection and privacy risks.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Daniel Ayala-Ruiz ◽  
Alejandro Castillo Atoche ◽  
Erica Ruiz-Ibarra ◽  
Edith Osorio de la Rosa ◽  
Javier Vázquez Castillo

Long power wide area networks (LPWAN) systems play an important role in monitoring environmental conditions for smart cities applications. With the development of Internet of Things (IoT), wireless sensor networks (WSN), and energy harvesting devices, ultra-low power sensor nodes (SNs) are able to collect and monitor the information for environmental protection, urban planning, and risk prevention. This paper presents a WSN of self-powered IoT SNs energetically autonomous using Plant Microbial Fuel Cells (PMFCs). An energy harvesting device has been adapted with the PMFC to enable a batteryless operation of the SN providing power supply to the sensor network. The low-power communication feature of the SN network is used to monitor the environmental data with a dynamic power management strategy successfully designed for the PMFC-based LoRa sensor node. Environmental data of ozone (O3) and carbon dioxide (CO2) are monitored in real time through a web application providing IoT cloud services with security and privacy protocols.


2021 ◽  
Vol 51 (11) ◽  
pp. 1026-1029
Author(s):  
S Savoviċ ◽  
A Djordjevich ◽  
R Min ◽  
I Savoviċ

Author(s):  
Rashi Maheshwari

Abstract: Traffic signal control frameworks are generally used to monitor and control the progression of cars through the intersection of roads. Moreover, a portable controller device is designed to solve the issue of emergency vehicles stuck in overcrowded roads. The main objective of this paper is to design and implement a suitable algorithm and its simulation for an intelligent traffic signal simulator. The framework created can detect the presence or nonappearance of vehicles within a specific reach by setting appropriate duration for traffic signals to react accordingly. By employing mathematical functions and algorithms to ascertain the suitable timing for the green signal to illuminate, the framework can assist with tackling the issue of traffic congestion. The explanation relies on recent fixed programming time. Keywords: Smart Traffic Light System, Smart City, Traffic Monitoring.


Sign in / Sign up

Export Citation Format

Share Document