scholarly journals Two‐tier combined active and reactive power controls for VSC–HVDC‐connected large‐scale wind farm cluster based on ADMM

2020 ◽  
Vol 14 (8) ◽  
pp. 1379-1386 ◽  
Author(s):  
Sheng Huang ◽  
Yusheng Gong ◽  
Qiuwei Wu ◽  
Fei Rong
2012 ◽  
Vol 588-589 ◽  
pp. 574-577 ◽  
Author(s):  
Yan Juan Wu ◽  
Lin Chuan Li

Some faults will result wind turbine generators off-grid due to low grid voltage , furthermore, large-scale wind farms tripping can result in severe system oscillation and aggravate system transient instability . In view of this, static compensator (STATCOM) is installed in the grid containing large-scale wind farm. A voltage feedforward control strategy is proposed to adjust the reactive power of STATCOM compensation and ensure that the grid voltage is quickly restored to a safe range. The mathematical model of the doubly-fed induction wind generator (DFIG) is proposed. The control strategy of DFIG uses PI control for rotor angular velocity and active power. 4-machine system simulation results show that the STATCOM reactive power compensation significantly improve output active power of large-scale wind farm satisfying transient stability, reduce the probability of the tripping, and improve the utilization efficiency of wind farms.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3177 ◽  
Author(s):  
Yunqi Xiao ◽  
Yi Wang ◽  
Yanping Sun

A reactive power/voltage control strategy is proposed that uses wind turbines as distributed reactive power sources to optimize the power flow in large-scale wind farms and reduce the overall losses of the collector system. A mathematical model of loss optimization for the wind farm collector systems is proposed based on a reactive power/voltage sensitivity analysis; a genetic algorithm (GA) and particle swarm optimization (PSO) algorithm are used to validate the optimization performances. The simulation model is established based on a large-scale wind farm. The results of multiple scenarios show that the proposed strategy is superior to the traditional methods with regard to the reactive power/voltage control of the wind farm and the loss reduction of the collector system. Furthermore, the advantages in terms of annual energy savings and environmental protection are also estimated.


2014 ◽  
Vol 953-954 ◽  
pp. 505-508
Author(s):  
Xiao Du ◽  
Zhi Qiang Dai ◽  
Huan Liu ◽  
Si Ming Wei ◽  
Yi Gong Zhang ◽  
...  

With the development of concentrated wind power areas, new energy’s dispatching problems are more prominent with its fast expansion. However, we can maximize the utilization of wind power under power curtailment conditions by optimal wind power dispatching. The paper studies on the basic theories of wind power turbines, and analyses the power’s control and output characteristics of wind turbine. By studying the unit commitment of wind turbines, this paper provides a strategy for optimal dispatch in wind power generation. The calculation results show that the total active and reactive power output of the wind farm match the request of dispatch center. And the total active loss and total reactive loss is the least in the meantime.


2013 ◽  
Vol 380-384 ◽  
pp. 3051-3056 ◽  
Author(s):  
Xiao Dan Wu ◽  
Wen Ying Liu

In this paper, starting from the active network loss formulas and wind characteristics, it is pointed out the reactive power loss and reactive flow is the major impact of wind power integration on power system loss. The reactive power loss formulas of box-type transformer, main step-up transformer, wind farm collector line and connecting grid line are analyzed. Next the reactive power loss of transformer and transmission line is described in detail. Then put forward the loss reduction measures that installing SVC on the low voltage side of the main step-up transformer and making the doubly-fed wind generators send out some reactive power at an allowed power factor. Use the case of Gansu Qiaodong wind farm to verify the effectiveness of the proposed measures.


Sign in / Sign up

Export Citation Format

Share Document