Detection of epileptic seizure and seizure-free EEG signals employing generalised S -transform

2017 ◽  
Vol 11 (7) ◽  
pp. 847-855 ◽  
Author(s):  
Soumya Chatterjee ◽  
Niladri Ray Choudhury ◽  
Rohit Bose
2015 ◽  
Vol 12 (03) ◽  
pp. 1550021 ◽  
Author(s):  
M. A. Al-Manie ◽  
W. J. Wang

Due to the advantages offered by the S-transform (ST) distribution, it has been recently successfully implemented for various applications such as seismic and image processing. The desirable properties of the ST include a globally referenced phase as the case with the short time Fourier transform (STFT) while offering a higher spectral resolution as the wavelet transform (WT). However, this estimator suffers from some inherent disadvantages seen as poor energy concentration with higher frequencies. In order to improve the performance of the distribution, a modification to the existing technique is proposed. Additional parameters are proposed to control the window's width which can greatly enhance the signal representation in the time–frequency plane. The new estimator's performance is evaluated using synthetic signals as well as biomedical data. The required features of the ST which include invertability and phase information are still preserved.


Webology ◽  
2021 ◽  
Vol 18 (Special Issue 04) ◽  
pp. 327-340
Author(s):  
A. Phraeson Gini ◽  
Dr.M.P. Flower Queen

Epilepsy is a psychiatric condition that has serious consequences for the human brain. The Electroencephalogram (EEG) may reveal a pattern that tells physicians whether an epileptic seizure is likely to occur again. EEG testing may also help the physician exclude other conditions that mimic epilepsy as a reason for the seizure. Now-a-days the researchers are showing much interest in these seizure detection because of its significance in epileptic detection. This paper is addressing an efficient soft computing framework for seizure detection from the EEG signal. The proposed pipeline of work is having the state-of-art as the possibility of achieving the maximum accuracy. The spectral features extracted from the Intrinsic mode functions (IMF) of EEG samples and it is directing the proposed flow towards the efficient detection of seizure and also the random forest algorithm based a convulsion classification is reliable for because of its learning behavior from the huge number of known dataset. The feature selection algorithm in this proposed work is stimulating the overall work towards the maximum true positive rate. This work is implemented on MATLAB platform and dataset were downloaded from the universal database such as Bonn university database. The results obtained from the proposed approach is showing the truthfulness of the approach introduced here.


2021 ◽  
Vol 17 (2) ◽  
pp. 109-113
Author(s):  
Ameen Omar Barja

One of the most important fields in clinical neurophysiology is an electroencephalogram (EEG). It is a test used to detect problems related to the brain electrical activity, and it can track and records patterns of brain waves. EEG continues to play an essential role in diagnosis and management of patients with epileptic seizure disorders. Nevertheless, the outcome of EEG as a tool for evaluating epileptic seizure is often interpreted as a noise rather than an ordered pattern. The mathematical modelling of EEG signals provides valuable data to neurologists, and is heavily utilized in the diagnosis and treatment of epilepsy. EEG signals during the seizure can be modeled as ordinary differential equation (ODE). In this study we will present an alternative form of ODE of EEG signals through the seizure.


Sign in / Sign up

Export Citation Format

Share Document