scholarly journals Research on sensitivity analysis of wind power consumption capability of integrated energy system based on unified optimal power flow model

2019 ◽  
Vol 2019 (12) ◽  
pp. 8471-8476
Author(s):  
Yongqiang Mu ◽  
Chunsheng Wang ◽  
Guangyou Kang ◽  
Zheng Wang ◽  
Tao Jiang ◽  
...  
Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhengfeng Qin ◽  
Xiaoqing Bai ◽  
Xiangyang Su

The application of gas turbines and power to gas equipment deepens the coupling relationship between power systems and natural gas systems and provides a new way to absorb the uncertain wind power as well. The traditional stochastic optimization and robust optimization algorithms have some limitations and deficiencies in dealing with the uncertainty of wind power output. Therefore, we propose a robust stochastic optimization (RSO) model to solve the dynamic optimal power flow model for electricity-gas integrated energy systems (IES) considering wind power uncertainty, where the ambiguity set of wind power output is constructed based on Wasserstein distance. Then, the Wasserstein ambiguity set is affined to the eventwise ambiguity set, and the proposed RSO model is transformed into a mixed-integer programming model, which can be solved rapidly and accurately using commercial solvers. Numerical results for EG-4 and EG-118 systems verify the rationality and effectiveness of the proposed model.


2021 ◽  
pp. 0309524X2199277
Author(s):  
Hongfen Zhang ◽  
Youchao Zhang

Aiming at the influence of the uncertainty of power system operating parameters such as wind power fluctuation on AC-DC hybrid system, an interval optimal power flow calculation method based on interval and affine arithmetic is proposed in this paper. First, AC and DC interval power flow model is constructed based on the relationship between interval and affine arithmetic, and the uncertainties such as the new energy generation output of the system are expressed as interval variables; static security performance index (PI) is introduced in AC-DC multi-objective optimal power flow objective functions, which take the system’s power generation cost and network loss into account; the Pareto optimal solution set is distributed uniformly in space by using the particle swarm algorithm to solve the interval optimal power flow model. Finally, MATLAB simulation examples are used to verify that the method can optimize the system’s power generation cost, network loss and static safety index while considering wind power fluctuation.


2020 ◽  
Vol 12 (12) ◽  
pp. 31-43
Author(s):  
Tatiana A. VASKOVSKAYA ◽  
◽  
Boris A. KLUS ◽  

The development of energy storage systems allows us to consider their usage for load profile leveling during operational planning on electricity markets. The paper proposes and analyses an application of an energy storage model to the electricity market in Russia with the focus on the day ahead market. We consider bidding, energy storage constraints for an optimal power flow problem, and locational marginal pricing. We show that the largest effect for the market and for the energy storage system would be gained by integration of the energy storage model into the market’s optimization models. The proposed theory has been tested on the optimal power flow model of the day ahead market in Russia of 10000-node Unified Energy System. It is shown that energy storage systems are in demand with a wide range of efficiencies and cycle costs.


Sign in / Sign up

Export Citation Format

Share Document