Multi-objective particle swarm optimisation control

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3356
Author(s):  
Mustafa Hasan Albowarab ◽  
Nurul Azma Zakaria ◽  
Zaheera Zainal Abidin

Various aspects of task execution load balancing of Internet of Things (IoTs) networks can be optimised using intelligent algorithms provided by software-defined networking (SDN). These load balancing aspects include makespan, energy consumption, and execution cost. While past studies have evaluated load balancing from one or two aspects, none has explored the possibility of simultaneously optimising all aspects, namely, reliability, energy, cost, and execution time. For the purposes of load balancing, implementing multi-objective optimisation (MOO) based on meta-heuristic searching algorithms requires assurances that the solution space will be thoroughly explored. Optimising load balancing provides not only decision makers with optimised solutions but a rich set of candidate solutions to choose from. Therefore, the purposes of this study were (1) to propose a joint mathematical formulation to solve load balancing challenges in cloud computing and (2) to propose two multi-objective particle swarm optimisation (MP) models; distance angle multi-objective particle swarm optimization (DAMP) and angle multi-objective particle swarm optimization (AMP). Unlike existing models that only use crowding distance as a criterion for solution selection, our MP models probabilistically combine both crowding distance and crowding angle. More specifically, we only selected solutions that had more than a 0.5 probability of higher crowding distance and higher angular distribution. In addition, binary variants of the approaches were generated based on transfer function, and they were denoted by binary DAMP (BDAMP) and binary AMP (BAMP). After using MOO mathematical functions to compare our models, BDAMP and BAMP, with state of the standard models, BMP, BDMP and BPSO, they were tested using the proposed load balancing model. Both tests proved that our DAMP and AMP models were far superior to the state of the art standard models, MP, crowding distance multi-objective particle swarm optimisation (DMP), and PSO. Therefore, this study enables the incorporation of meta-heuristic in the management layer of cloud networks.


2018 ◽  
Vol 13 (4) ◽  
pp. 1037-1056 ◽  
Author(s):  
Huthaifa AL-Khazraji ◽  
Colin Cole ◽  
William Guo

Purpose This paper aims to optimise the dynamic performance of production–inventory control systems in terms of minimisation variance ratio between the order rate and the consumption, and minimisation the integral of absolute error between the actual and the target level of inventory by incorporating the Pareto optimality into particle swarm optimisation (PSO). Design/method/approach The production–inventory control system is modelled and optimised via control theory and simulations. The dynamics of a production–inventory control system are modelled through continuous time differential equations and Laplace transformations. The simulation design is conducted by using the state–space model of the system. The results of multi-objective particle swarm optimisation (MOPSO) are compared with published results obtained from weighted genetic algorithm (WGA) optimisation. Findings The results obtained from the MOPSO optimisation process ensure that the performance is systematically better than the WGA in terms of reducing the order variability (bullwhip effect) and improving the inventory responsiveness (customer service level) under the same operational conditions. Research limitations/implications This research is limited to optimising the dynamics of a single product, single-retailer single-manufacturer process with zero desired inventory level. Originality/value PSO is widely used and popular in many industrial applications. This research shows a unique application of PSO in optimising the dynamic performance of production–inventory control systems.


2020 ◽  
Vol 153 ◽  
pp. 106385 ◽  
Author(s):  
Ehsan Sadrossadat ◽  
Hakan Basarir ◽  
Ganhua Luo ◽  
Ali Karrech ◽  
Richard Durham ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document