scholarly journals A search for new supernova remnant shells in the Galactic plane with H.E.S.S.

2018 ◽  
Vol 612 ◽  
pp. A8 ◽  
Author(s):  
◽  
H. Abdalla ◽  
A. Abramowski ◽  
F. Aharonian ◽  
F. Ait Benkhali ◽  
...  

A search for new supernova remnants (SNRs) has been conducted using TeV γ-ray data from the H.E.S.S. Galactic plane survey. As an identification criterion, shell morphologies that are characteristic for known resolved TeV SNRs have been used. Three new SNR candidates were identified in the H.E.S.S. data set with this method. Extensive multiwavelength searches for counterparts were conducted. A radio SNR candidate has been identified to be a counterpart to HESS J1534−571. The TeV source is therefore classified as a SNR. For the other two sources, HESS J1614−518 and HESS J1912+101, no identifying counterparts have been found, thus they remain SNR candidates for the time being. TeV-emitting SNRs are key objects in the context of identifying the accelerators of Galactic cosmic rays. The TeV emission of the relativistic particles in the new sources is examined in view of possible leptonic and hadronic emission scenarios, taking the current multiwavelength knowledge into account.

2013 ◽  
Vol 9 (S296) ◽  
pp. 305-314
Author(s):  
Jacco Vink

AbstractSupernova remnants have long been considered to be the dominant sources of Galactic cosmic rays. For a long time the prime evidence consisted of radio synchrotron radiation from supernova remnants, indicating the presence of electrons with energies of several GeV. However, in order to explain the cosmic ray energy density and spectrum in the Galaxy supernova remnant should use 10% of the explosion energy to accelerate particles, and about 99% of the accelerated particles should be protons and other atomic nuclei.Over the last decade a lot of progress has been made in providing evidence that supernova remnant can accelerate protons to very high energies. The evidence consists of, among others, X-ray synchrotron radiation from narrow regions close to supernova remnant shock fronts, indicating the presence of 10-100 TeV electrons, and providing evidence for amplified magnetic fields, gamma-ray emission from both young and mature supernova remnants. The high magnetic fields indicate that the condition for accelerating protons to >1015 eV are there, whereas the gamma-ray emission from some mature remnants indicate that protons have been accelerated.


2018 ◽  
Vol 612 ◽  
pp. A3 ◽  
Author(s):  
◽  
H. Abdalla ◽  
A. Abramowski ◽  
F. Aharonian ◽  
F. Ait Benkhali ◽  
...  

Shell-type supernova remnants (SNRs) are considered prime candidates for the acceleration of Galactic cosmic rays (CRs) up to the knee of the CR spectrum at E ≈ 3 × 1015 eV. Our Milky Way galaxy hosts more than 350 SNRs discovered at radio wavelengths and at high energies, of which 220 fall into the H.E.S.S. Galactic Plane Survey (HGPS) region. Of those, only 50 SNRs are coincident with a H.E.S.S source and in 8 cases the very high-energy (VHE) emission is firmly identified as an SNR. The H.E.S.S. GPS provides us with a legacy for SNR population study in VHE γ-rays and we use this rich data set to extract VHE flux upper limits from all undetected SNRs. Overall, the derived flux upper limits are not in contradiction with the canonical CR paradigm. Assuming this paradigm holds true, we can constrain typical ambient density values around shell-type SNRs to n ≤ 7 cm−3 and electron-to-proton energy fractions above 10 TeV to ϵep ≤ 5 × 10−3. Furthermore, comparisons of VHE with radio luminosities in non-interacting SNRs reveal a behaviour that is in agreement with the theory of magnetic field amplification at shell-type SNRs.


2007 ◽  
Vol 22 (05) ◽  
pp. 995-1026 ◽  
Author(s):  
LORENZO ZANINETTI

Superbubbles are shells in the interstellar medium produced by the simultaneous explosions of many supernova remnants. The solutions of the mathematical diffusion and of the Fourier expansion in 1D, 2D and 3D were deduced in order to describe the diffusion of nucleons from such structures. The mean number of visits in the the case of the Levy flights in 1D was computed with a Monte Carlo simulation. The diffusion of cosmic rays has its physical explanation in the relativistic Larmor gyro-radius which is energy dependent. The mathematical solution of the diffusion equation in 1D with variable diffusion coefficient was computed. Variable diffusion coefficient means magnetic field variable with the altitude from the Galactic plane. The analytical solutions allow us to calibrate the code that describes the Monte Carlo diffusion. The maximum energy that can be extracted from the superbubbles is deduced. The concentration of cosmic rays is a function of the distance from the nearest superbubble and the selected energy. The interaction of the cosmic rays on the target material allows us to trace the theoretical map of the diffuse Galactic continuum gamma-rays. The streaming of the cosmic rays from the Gould Belts that contains the sun at its internal was described by a Monte Carlo simulation. Ten new formulas are derived.


2004 ◽  
Vol 218 ◽  
pp. 57-64
Author(s):  
Jacco Vink

The two main aspects of supernova remnant research addressed in this review are: I. What is our understanding of the progenitors of the observed remnants, and what have we learned from these remnants about supernova nucleosynthesis? II. Supernova remnants are probably the major source of cosmic rays. What are the recent advances in the observational aspects of cosmic ray acceleration in supernova remnants?


2011 ◽  
Vol 75 (3) ◽  
pp. 299-301
Author(s):  
V. N. Zirakashvili ◽  
V. S. Ptuskin ◽  
E. S. Seo

2020 ◽  
Vol 497 (3) ◽  
pp. 3581-3590
Author(s):  
Emma de Oña Wilhelmi ◽  
Iurii Sushch ◽  
Robert Brose ◽  
Enrique Mestre ◽  
Yang Su ◽  
...  

ABSTRACT Recent results obtained with gamma-ray satellites have established supernova remnants as accelerators of GeV hadronic cosmic rays. In such processes, CRs accelerated in SNR shocks interact with particles from gas clouds in their surrounding. In particular, the rich medium in which core-collapse SNRs explode provides a large target density to boost hadronic gamma-rays. SNR G39.2–0.3 is one of the brightest SNR in infrared wavelengths, and its broad multiwavelength coverage allows a detailed modelling of its radiation from radio to high energies. We reanalysed the Fermi-LAT data on this region and compare it with new radio observations from the MWISP survey. The modelling of the spectral energy distribution from radio to GeV energies favours a hadronic origin of the gamma-ray emission and constrains the SNR magnetic field to be at least ∼100 µG. Despite the large magnetic field, the present acceleration of protons seems to be limited to ∼10 GeV, which points to a drastic slow down of the shock velocity due to the dense wall traced by the CO observations, surrounding the remnant. Further investigation of the gamma-ray spectral shape points to a dynamically old remnant subjected to severe escape of CRs and a decrease of acceleration efficiency. The low-energy peak of the gamma-ray spectrum also suggests that that the composition of accelerated particles might be enriched by heavy nuclei which is certainly expected for a core-collapse SNR. Alternatively, the contribution of the compressed pre-existing Galactic cosmic rays is discussed, which is, however, found to not likely be the dominant process for gamma-ray production.


2013 ◽  
Vol 53 (A) ◽  
pp. 612-616
Author(s):  
Manami Sasaki

Supernova remnants, owing to their strong shock waves, are likely sources of Galactic cosmic rays. Studies of supernova remnants in X-rays and gamma rays provide us with new insights into the acceleration of particles to high energies. This paper reviews the basic physics of supernova remnant shocks and associated particle acceleration and radiation processes. In addition, the study of supernova remnant populations in nearby galaxies and the implications for Galactic cosmic ray distribution are discussed.


2013 ◽  
Vol 9 (S296) ◽  
pp. 378-379 ◽  
Author(s):  
Hui Zhu ◽  
Wenwu Tian

AbstractSupernova remnants (SNRs) play a key role in understanding supernovae explosion mechanisms, exploring the likely sources of Galactic cosmic rays and the chemical enrichment of interstellar medium (ISM). Reliable distance determinations to Galactic SNRs are key to obtain their basic parameters, such as size, age, explosion energy, which helps us to study their environment and interstellar medium. We review the methods to determine the distances to SNRs and highlight the kinematic distance measurement by Hi absorption and CO emission observations.


2013 ◽  
Vol 53 (A) ◽  
pp. 718-723
Author(s):  
Daniele Fargion

UHECR (Ultra High Energy Cosmic Rays) were expected to be protons, to fly straight and to suffer of a GZK (opacity on CMB radiation) cut off. AUGER did suggest on 2007 that such early UHECR anisotropy was compatible with the foreseen Super-Galactic plane while both HIRES and AUGER confirmed such apparent GZK cut-off in the spectra. However the same AUGER composition since 2007 was favoring nuclei (and not nucleon). The recent absence of narrow angle clustering in UHECR maps, as it should be expected by protons, the missing of events along nearest Cluster Virgo, the wide spread (16°) angle of UHECR along CenA are in disagreement with first proton–UHECR AUGER understanding. We claimed since 2008 a light nuclei role for CenA crowded area. On the other side the ICECUBE absence of TeVs neutrino clustering or anisotropy, its spectra steepening is favoring mostly a ruling atmospheric neutrino noise up to tens TeV. However recent two PeV neutrino event cannot easily coexist or being extrapolate with such atmospheric ruling scenario, nor with GZK (either nucleon or nuclei) secondaries expected spectra. Finally tens TeV gamma anisotropy in ARGO–MILAGRO–ICECUBE maps may hardly be associated with known hadronic sources. We<br />imagine such anisotropy ruled by diffused gamma secondaries, being shine along UHECR bending and flight: radioactive light and heavy UHECR nuclei, while decaying in flight, may paint in the sky (by gamma, electrons and neutrinos) their trajectories and bending, connecting UHECR spread events with TeV anisotropy, as well offering a very realistic source of first, otherwise puzzling, observed PeV neutrinos.


Sign in / Sign up

Export Citation Format

Share Document