scholarly journals Diffuse γ-ray emission toward the massive star-forming region, W40

2020 ◽  
Vol 639 ◽  
pp. A80
Author(s):  
Xiao-Na Sun ◽  
Rui-Zhi Yang ◽  
Yun-Feng Liang ◽  
Fang-Kun Peng ◽  
Hai-Ming Zhang ◽  
...  

We report the detection of high-energy γ-ray signal towards the young star-forming region, W40. Using 10-yr Pass 8 data from the Fermi Large Area Telescope (Fermi-LAT), we extracted an extended γ-ray excess region with a significance of ~18σ. The radiation has a spectrum with a photon index of 2.49 ± 0.01. The spatial correlation with the ionized gas content favors the hadronic origin of the γ-ray emission. The total cosmic-ray (CR) proton energy in the γ-ray production region is estimated to be the order of 1047 erg. However, this could be a small fraction of the total energy released in cosmic rays (CRs) by local accelerators, presumably by massive stars, over the lifetime of the system. If so, W40, together with earlier detections of γ-rays from Cygnus cocoon, Westerlund 1, Westerlund 2, NGC 3603, and 30 Dor C, supports the hypothesis that young star clusters are effective CR factories. The unique aspect of this result is that the γ-ray emission is detected, for the first time, from a stellar cluster itself, rather than from the surrounding “cocoons”.

2020 ◽  
Vol 640 ◽  
pp. A60
Author(s):  
Rui-Zhi Yang ◽  
Yuan Wang

In this paper we report the Fermi Large Area Telescope (Fermi-LAT) detection of the γ-ray emission toward the young star forming region W43. Using the latest source catalog and diffuse background models, the extended γ-ray excess is detected with a significance of ~16σ. The γ-ray emission has a spectrum with a photon index of 2.3 ± 0.1. We also performed a detailed analysis of the gas content in this region by taking into account the opacity correction to the HI gas column density. The total cosmic-ray (CR) proton energy is estimated to be on the order of 1048 erg, assuming the γ-rays are produced from the interaction of the accelerated protons and nuclei with the ambient gas. Comparing this region to the other star formation regions in our Galaxy, we find that the CR luminosity is better correlated with the wind power than the star formation rate (SFR). This result suggests that CRs are primarily accelerated by stellar wind in these systems.


2019 ◽  
Vol 622 ◽  
pp. A57 ◽  
Author(s):  
M. Cardillo ◽  
N. Marchili ◽  
G. Piano ◽  
A. Giuliani ◽  
M. Tavani ◽  
...  

Context. In recent years, an in-depth γ-ray analysis of the Orion region has been carried out by the AGILE and Fermi/LAT (Large Area Telescope) teams with the aim of estimating the H2–CO conversion factor, XCO. The comparison of the data from both satellites with models of diffuse γ-ray Galactic emission unveiled an excess at (l, b)=[213.9, −19.5], in a region at a short angular distance from the OB star κ-Ori. Possible explanations of this excess are scattering of the so-called “dark gas”, non-linearity in the H2–CO relation, or cosmic-ray (CR) energization at the κ-Ori wind shock. Aims. Concerning this last hypothesis, we want to verify whether cosmic-ray acceleration or re-acceleration could be triggered at the κ-Ori forward shock, which we suppose to be interacting with a star-forming shell detected in several wavebands and probably triggered by high energy particles. Methods. Starting from the AGILE spectrum of the detected γ-ray excess, showed here for the first time, we developed a valid physical model for cosmic-ray energization, taking into account re-acceleration, acceleration, energy losses, and secondary electron contribution. Results. Despite the characteristic low velocity of an OB star forward shock during its “snowplow” expansion phase, we find that the Orion γ-ray excess could be explained by re-acceleration of pre-existing cosmic rays in the interaction between the forward shock of κ-Ori and the CO-detected, star-forming shell swept-up by the star expansion. According to our calculations, a possible contribution from freshly accelerated particles is sub-dominant with respect the re-acceleration contribution. However, a simple adiabatic compression of the shell could also explain the detected γ-ray emission. Futher GeV and TeV observations of this region are highly recommended in order to correctly identify the real physical scenario.


2018 ◽  
Vol 611 ◽  
pp. A77 ◽  
Author(s):  
Rui-zhi Yang ◽  
Emma de Oña Wilhelmi ◽  
Felix Aharonian

We report the results of our analysis of the publicly available data obtained by the Large Area Telescope (LAT) on board the Fermi satellite towards the direction of the young massive star cluster Westerlund 2. We found significant extended γ-ray emission in the vicinity of Westerlund 2 with a hard power-law energy spectrum extending from 1 to 250 GeV with a photon index of 2.0 ± 0.1. We argue that amongst several alternatives, the luminous stars in Westerlund 2 are likely sites of acceleration of particles responsible for the diffuse γ-ray emission of the surrounding interstellar medium. In particular, the young star cluster Westerlund 2 can provide sufficient non-thermal energy to account for the γ-ray emission. In this scenario, since the γ-ray production region is significantly larger than the area occupied by the star cluster, we conclude that the γ-ray production is caused by hadronic interactions of accelerated protons and nuclei with the ambient gas. In that case, the total energy budget in relativistic particles is estimated of the order of 1050 erg.


2020 ◽  
Vol 500 (1) ◽  
pp. 1087-1094
Author(s):  
Prabir Banik ◽  
Arunava Bhadra ◽  
Abhijit Bhattacharyya

ABSTRACT The nearest active radio galaxy Centaurus (Cen) A is a gamma-ray emitter in GeV–TeV energy scale. The high energy stereoscopic system (HESS) and non-simultaneous Fermi–Large Area Telescope observation indicate an unusual spectral hardening above few GeV energies in the gamma-ray spectrum of Cen A. Very recently the HESS observatory resolved the kilo parsec (kpc)-scale jets in Centaurus A at TeV energies. On the other hand, the Pierre Auger Observatory (PAO) detects a few ultrahigh energy cosmic ray (UHECR) events from Cen-A. The proton blazar inspired model, which considers acceleration of both electrons and hadronic cosmic rays in active galactic nuclei (AGN) jet, can explain the observed coincident high-energy neutrinos and gamma-rays from Ice-cube detected AGN jets. Here, we have employed the proton blazar inspired model to explain the observed GeV–TeV gamma-ray spectrum features including the spectrum hardening at GeV energies along with the PAO observation on cosmic rays from Cen-A. Our findings suggest that the model can explain consistently the observed electromagnetic spectrum in combination with the appropriate number of UHECRs from Cen A.


2020 ◽  
Vol 499 (2) ◽  
pp. 2028-2041
Author(s):  
S M Benincasa ◽  
J W Wadsley ◽  
H M P Couchman ◽  
A R Pettitt ◽  
B W Keller ◽  
...  

ABSTRACT Far-ultraviolet (FUV) radiation greatly exceeds UV, supernovae (SNe), and winds in the energy budget of young star clusters but is poorly modelled in galaxy simulations. We present results of the first isolated galaxy disc simulations to include photoelectric heating of gas via dust grains from FUV radiation self-consistently, using a ray-tracing approach that calculates optical depths along the source–receiver sightline. This is the first science application of the TREVR radiative transfer algorithm. We find that FUV radiation alone cannot regulate star formation. However, FUV radiation produces warm neutral gas and is able to produce regulated galaxies with realistic scale heights. FUV is also a long-range feedback and is more important in the outer discs of galaxies. We also use the superbubble feedback model, which depends only on the SN energy per stellar mass, is more physically realistic than common, parameter-driven alternatives and thus better constrains SN feedback impacts. FUV and SNe together can regulate star formation without producing too much hot ionized medium and with less disruption to the interstellar medium compared to SNe alone.


2015 ◽  
Vol 11 (S320) ◽  
pp. 51-56
Author(s):  
Nicola Omodei ◽  
Melissa Pesce-Rollins ◽  
Vahè Petrosian ◽  
Wei Liu ◽  
Fatima Rubio da Costa ◽  
...  

AbstractThe Fermi Large Area Telescope (LAT) is the most sensitive instrument ever deployed in space for observing gamma-ray emission >100 MeV. This has also been demonstrated by its detection of quiescent gamma-ray emission from pions produced by cosmic-ray protons interacting in the solar atmosphere, and from cosmic-ray electron interactions with solar optical photons. The Fermi-LAT has also detected high-energy gamma-ray emission associated with GOES M-class and X-class solar flares, each accompanied by a coronal mass ejection and a solar energetic particle event, increasing the number of detected solar flares by almost a factor of 10 with respect to previous space observations. During the impulsive phase, gamma rays with energies up to several hundreds of MeV have been recorded by the LAT. Emission up to GeV energies lasting several hours after the flare has also been detected by the LAT. Of particular interest are the recent detections of three solar flares whose position behind the limb was confirmed by the STEREO satellites. While gamma-ray emission up to tens of MeV resulting from proton interactions has been detected before from occulted solar flares, the significance of these particular events lies in the fact that these are the first detections of >100 MeV gamma-ray emission from footpoint-occulted flares. We will present the Fermi-LAT, RHESSI and STEREO observations of these flares and discuss the various emission scenarios for these sources.


2010 ◽  
Author(s):  
F. Loparco ◽  
Claudia Cecchi ◽  
Stefano Ciprini ◽  
Pasquale Lubrano ◽  
Gino Tosti ◽  
...  

2018 ◽  
Vol 612 ◽  
pp. A11 ◽  
Author(s):  
◽  
H. Abdalla ◽  
A. Abramowski ◽  
F. Aharonian ◽  
F. Ait Benkhali ◽  
...  

Using the High Energy Spectroscopic System (H.E.S.S.) telescopes we have discovered a steady and extended very high-energy (VHE) γ-ray source towards the luminous blue variable candidate LBV 1806−20, massive stellar cluster Cl* 1806−20, and magnetar SGR 1806−20. The new VHE source, HESS J1808−204, was detected at a statistical significance of >6σ (post-trial) with a photon flux normalisation (2.9 ± 0.4stat ± 0.5sys) × 10−13 ph cm−2 s−1 TeV−1 at 1 TeV and a power-law photon index of 2.3 ± 0.2stat ± 0.3sys. The luminosity of this source (0.2 to 10 TeV; scaled to distance d = 8.7 kpc) is LVHE ~ 1.6 × 1034(d/8.7 kpc)2 erg s−1. The VHE γ-ray emission is extended and is well fit by a single Gaussian with statistical standard deviation of 0.095° ± 0.015°. This extension is similar to that of the synchrotron radio nebula G10.0−0.3, which is thought to be powered by LBV 1806−20. The VHE γ-ray luminosity could be provided by the stellar wind luminosity of LBV 1806−20 by itself and/or the massive star members of Cl* 1806−20. Alternatively, magnetic dissipation (e.g. via reconnection) from SGR 1806−20 can potentially account for the VHE luminosity. The origin and hadronic and/or leptonic nature of the accelerated particles responsible for HESS J1808−204 is not yet clear. If associated with SGR 1806−20, the potentially young age of the magnetar (650 yr) can be used to infer the transport limits of these particles to match the VHE source size. This discovery provides new interest in the potential for high-energy particle acceleration from magnetars, massive stars, and/or stellar clusters.


Sign in / Sign up

Export Citation Format

Share Document