scholarly journals The CosmIc Large-Scale Structure in X-rays (CLASSIX) Cluster Survey. III. The Perseus-Pices supercluster and the Southern Great Wall as traced by X-ray luminous galaxy clusters

Author(s):  
H. Böhringer ◽  
G. Chon ◽  
J. Trümper
2005 ◽  
Vol 216 ◽  
pp. 373-380
Author(s):  
Marguerite Pierre

We outline the main arguments in favor of cosmological X-ray surveys of galaxy clusters. We summarize recent advances in our understanding of cluster physics. After a short review of past surveys, we present the scientific motivations of the XMM Large Scale Structure survey. We further illustrate how such a survey can help constrain the nature of the dark energy as well as cluster scaling law evolution, i.e. non-gravitational physics.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
R. Fassbender ◽  
R. Šuhada ◽  
A. Nastasi

Observational constraints on the average radial distribution profile of AGN in distant galaxy clusters can provide important clues on the triggering mechanisms of AGN activity in dense environments and are essential for a completeness evaluation of cluster selection techniques in the X-ray and mm wavebands. The aim of this work is a statistical study with XMM-Newtonof the presence and distribution of X-ray AGN in the large-scale structure environments of 22 X-ray luminous galaxy clusters in the redshift range0.9<z≲1.6compiled by the XMM-NewtonDistant Cluster Project (XDCP). To this end, the X-ray point source lists from detections in the soft band (0.35–2.4 keV) and full band (0.3–7.5 keV) were stacked in cluster-centric coordinates and compared to average background number counts extracted from three independent control fields in the same observations. A significant full-band (soft-band) excess of ∼78 (67) X-ray point sources is found in the cluster fields within an angular distance of8′(4 Mpc) at a statistical confidence level of 4.0σ (4.2σ), corresponding to an average number of detected excess AGN per cluster environment of 3.5 ± 0.9 (3.0 ± 0.7). The data point towards a rising radial profile in the cluster region (r<1 Mpc) of predominantly low-luminosity AGN with an average detected excess of about one point source per system, with a tentative preferred occurrence along the main cluster elongation axis. A second statistically significant overdensity of brighter soft-band-detected AGN is found at cluster-centric distances of 4′–6′(2-3 Mpc), corresponding to about three times the average cluster radiusR200of the systems. If confirmed, these results would support the idea of two different physical triggering mechanisms of X-ray AGN activity in dependence of the radially changing large-scale structure environment of the distant clusters. For high-zcluster studies at lower spatial resolution with the upcoming eROSITA all-sky X-ray survey, the results suggest that cluster-associated X-ray AGN may impose a bias in the spectral analysis of high-zsystems, while their detection and flux measurements in the soft band may not be significantly affected.


2016 ◽  
Vol 596 ◽  
pp. A22 ◽  
Author(s):  
Hans Böhringer ◽  
Gayoung Chon ◽  
Philipp P. Kronberg

Author(s):  
H Böhringer ◽  
P Schuecker ◽  
N. Nowak ◽  
P. Popesso ◽  
M. Huber

2014 ◽  
Vol 11 (S308) ◽  
pp. 200-204
Author(s):  
Gayoung Chon

AbstractWe study the large-scale structure with superclusters from the REFLEX X-ray cluster survey together with cosmological N-body simulations. It is important to construct superclusters with criteria such that they are homogeneous in their properties. We lay out our theoretical concept considering future evolution of superclusters in their definition, and show that the X-ray luminosity and halo mass functions of clusters in superclusters are found to be top-heavy, different from those of clusters in the field. We also show a promising aspect of using superclusters to study the local cluster bias and mass scaling relation with simulations.


Author(s):  
H. Böhringer ◽  
L. Guzzo ◽  
C. A. Collins ◽  
P. Schuecker ◽  
S. Schindler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document