scholarly journals Drug resistance in airborne bacteria isolated from waste management and wastewater treatment plants in Olsztyn

2019 ◽  
Vol 100 ◽  
pp. 00066 ◽  
Author(s):  
Jacek Potorski ◽  
Izabela Koniuszewska ◽  
Małgorzata Czatzkowska ◽  
Monika Harnisz

Wastewater treatment plants (WWTPs) and municipal waste management plants (MWMPs) emit bioaerosols containing potentially pathogenic biological components which post a threat for human health. Microbiological monitoring supports evaluations of the antibiotic resistance (AR) of airborne microorganisms and the relevant health risks. The aim of this study was to analyze the microbiological quality of air sampled in a WWTP and MWMP in Olsztyn based on total bacterial counts, the presence of bacteria resistant to three antibiotic classes (beta-lactams, tetracyclines and chloramphenicol) and genes encoding resistance to these antibiotics (blaTEM, blaSHV, blaCMY-2, blaAmpC, tet(M), tet(A), tet(X), tet(B), cmlA, floR, fexA, fexB and catA1 ). Bacterial counts were higher in air samples collected from the MWMP (~104 CFU/m3) than from the WWTP (101–103 CFU/m3). A similar trend was noted in the counts of antibiotic resistant bacteria (ARB). The abundance of ARB did not exceed 1.7 x 102 CFU/m3 in WWTP samples, but was higher at up to 4.2 x 103 CFU/m3 in MWMP samples. Bacteria resistant to doxycycline were least prevalent in the analyzed ARB. In the group of 49 tested bacterial strains, 44 harbored at least one of the analyzed antibiotic resistance genes (ARGs). A comparison of ARGs in all bacterial strains isolated from WWTP and MWMP air samples revealed the highest diversity and prevalence of ARGs in the samples collected in the mechanical segment of the waste processing line in MWMP and the biological segment of the wastewater processing line in WWTP. The results of this study point to high microbiological contamination of air in MWMPs and WWTPs which are reservoirs of ARB and ARGs and potential sources of AR.

2020 ◽  
Vol 8 (10) ◽  
pp. 1567
Author(s):  
Francesco Triggiano ◽  
Carla Calia ◽  
Giusy Diella ◽  
Maria Teresa Montagna ◽  
Osvalda De Giglio ◽  
...  

Scientific studies show that urban wastewater treatment plants (UWWTP) are among the main sources of release of antibiotics, antibiotic resistance genes (ARG) and antibiotic-resistant bacteria (ARB) into the environment, representing a risk to human health. This review summarizes selected publications from 1 January 2010 to 31 December 2019, with particular attention to the presence and treatment of ARG and ARB in UWWTPs in Italy. Following a brief introduction, the review is divided into three sections: (i) phenotypic assessment (ARB) and (ii) genotypic assessment (ARG) of resistant microorganisms, and (iii) wastewater treatment processes. Each article was read entirely to extract the year of publication, the geographical area of the UWWTP, the ARB and ARG found, and the type of disinfection treatment used. Among the ARB, we focused on the antibiotic resistance of Escherichia coli, Klebsiella pneumoniae, and Enterococci in UWWTP. The results show that the information presented in the literature to date is not exhaustive; therefore, future scientific studies at the national level are needed to better understand the spread of ARB and ARG, and also to develop new treatment methods to reduce this spread.


2021 ◽  
Vol 26 ◽  
Author(s):  
Maria Camila Zapata Zúñiga ◽  
Miguel Angel Parra-Pérez ◽  
Johan Alexander Álvarez-Berrio ◽  
Nidia Isabel Molina-Gómez

This study aimed to evaluate the efficiency of technologies for removing antibiotics, antibiotic-resistant bacteria and their antibiotic resistance genes, and the countries where they have been developed. For this purpose, was conducted a systematic review to identify the tertiary treatments to remove the above-mentioned pollutants. The ScienceDirect and Scopus databases were used as sources of information, taking into account only experimental research from 2006 to 2019 and technologies with removal rates higher than 70% to the information analyses. From the analysis of 9 technologies evaluated, in a set of 47 investigations, photo-Fenton, and electrochemical treatments were found to be the most efficient in the removal of antibiotics; gamma radiation and photocatalysis with TiO2 and UV revealed better results in the removal of resistant microbial agents and their resistance genes, with efficiencies of 99.9%. As one of the largest producers and consumers of antibiotics, China appears to be the country with the most scientific research on the area. The importance of innovation in wastewater treatment processes to achieve better results in the remotion of antibiotics, antibiotic-resistant bacteria, and their resistance genes is highlighted, given the effects on the aquatic ecosystems and public health.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2851 ◽  
Author(s):  
Magdalena Pazda ◽  
Magda Rybicka ◽  
Stefan Stolte ◽  
Krzysztof Piotr Bielawski ◽  
Piotr Stepnowski ◽  
...  

Antibiotic resistance is a growing problem worldwide. The emergence and rapid spread of antibiotic resistance determinants have led to an increasing concern about the potential environmental and public health endangering. Wastewater treatment plants (WWTPs) play an important role in this phenomenon since antibacterial drugs introduced into wastewater can exert a selection pressure on antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Therefore, WWTPs are perceived as the main sources of antibiotics, ARB and ARG spread in various environmental components. Furthermore, technological processes used in WWTPs and its exploitation conditions may influence the effectiveness of antibiotic resistance determinants’ elimination. The main aim of the present study was to compare the occurrence of selected tetracycline and sulfonamide resistance genes in raw influent and final effluent samples from two WWTPs different in terms of size and applied biological wastewater treatment processes (conventional activated sludge (AS)-based and combining a conventional AS-based method with constructed wetlands (CWs)). All 13 selected ARGs were detected in raw influent and final effluent samples from both WWTPs. Significant ARG enrichment, especially for tet(B, K, L, O) and sulIII genes, was observed in conventional WWTP. The obtained data did not show a clear trend in seasonal fluctuations in the abundance of selected resistance genes in wastewaters.


10.2196/33365 ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. e33365
Author(s):  
Mahbub-Ul Alam ◽  
Sharika Ferdous ◽  
Ayse Ercumen ◽  
Audrie Lin ◽  
Abul Kamal ◽  
...  

Background The widespread and unrestricted use of antibiotics has led to the emergence and spread of antibiotic-resistant bacteria (ARB), antibiotic-resistance genes (ARGs), and antibiotic residues in the environment. Conventional wastewater treatment plants (WWTPs) are not designed for effective and adequate removal of ARB, ARGs, and antibiotic residues, and therefore, they play an important role in the dissemination of antimicrobial resistance (AMR) in the natural environment. Objective We will conduct a systematic review to determine the most effective treatment strategies for the removal of ARB, ARGs, and antibiotic residues from the treated effluent disposed into the environment from WWTPs that receive municipal, hospital, and domestic discharge. Methods We will search the MEDLINE, EMBASE, Web of Science, World Health Organization Global Index Medicus, and ProQuest Environmental Science Collection databases for full-text peer-reviewed journal articles published between January 2001 and December 2020. We will select only articles published in the English language. We will include studies that measured (1) the presence, concentration, and removal rate of ARB/ARGs going from WWTP influent to effluent, (2) the presence, concentration, and types of antibiotics in the effluent, and (3) the possible selection of ARB in the effluent after undergoing treatment processes in WWTPs. At least two independent reviewers will extract data and perform risk of bias assessment. An acceptable or narrative synthesis method will be followed to synthesize the data and present descriptive characteristics of the included studies in a tabular form. The study has been approved by the Ethics Review Board at the International Centre for Diarrhoeal Disease Research, Bangladesh (protocol number: PR-20113). Results This protocol outlines our proposed methodology for conducting a systematic review. Our results will provide an update to the existing literature by searching additional databases. Conclusions Findings from our systematic review will inform the planning of proper treatment methods that can effectively reduce the levels of ARB, ARGs, and residual antibiotics in effluent, thus lowering the risk of the environmental spread of AMR and its further transmission to humans and animals. International Registered Report Identifier (IRRID) PRR1-10.2196/33365


2021 ◽  
Author(s):  
Mahbub-Ul Alam ◽  
Sharika Ferdous ◽  
Ayse Ercumen ◽  
Audrie Lin ◽  
Abul Kamal ◽  
...  

BACKGROUND The widespread and unrestricted use of antibiotics has led to the emergence and spread of antibiotic-resistant bacteria (ARB), antibiotic-resistance genes (ARGs), and antibiotic residues in the environment. Conventional wastewater treatment plants (WWTPs) are not designed for effective and adequate removal of ARB, ARGs, and antibiotic residues, and therefore, they play an important role in the dissemination of antimicrobial resistance (AMR) in the natural environment. OBJECTIVE We will conduct a systematic review to determine the most effective treatment strategies for the removal of ARB, ARGs, and antibiotic residues from the treated effluent disposed into the environment from WWTPs that receive municipal, hospital, and domestic discharge. METHODS We will search the MEDLINE, EMBASE, Web of Science, World Health Organization Global Index Medicus, and ProQuest Environmental Science Collection databases for full-text peer-reviewed journal articles published between January 2001 and December 2020. We will select only articles published in the English language. We will include studies that measured (1) the presence, concentration, and removal rate of ARB/ARGs going from WWTP influent to effluent, (2) the presence, concentration, and types of antibiotics in the effluent, and (3) the possible selection of ARB in the effluent after undergoing treatment processes in WWTPs. At least two independent reviewers will extract data and perform risk of bias assessment. An acceptable or narrative synthesis method will be followed to synthesize the data and present descriptive characteristics of the included studies in a tabular form. The study has been approved by the Ethics Review Board at the International Centre for Diarrhoeal Disease Research, Bangladesh (protocol number: PR-20113). RESULTS This protocol outlines our proposed methodology for conducting a systematic review. Our results will provide an update to the existing literature by searching additional databases. CONCLUSIONS Findings from our systematic review will inform the planning of proper treatment methods that can effectively reduce the levels of ARB, ARGs, and residual antibiotics in effluent, thus lowering the risk of the environmental spread of AMR and its further transmission to humans and animals. INTERNATIONAL REGISTERED REPORT PRR1-10.2196/33365


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3269 ◽  
Author(s):  
Jess A. Millar ◽  
Rahul Raghavan

We explored the bacterial diversity of untreated sewage influent samples of a wastewater treatment plant in Tucson, AZ and discovered that Arcobacter cryaerophilus, an emerging human pathogen of animal origin, was the most dominant bacterium. The other highly prevalent bacteria were members of the phyla Bacteroidetes and Firmicutes, which are major constituents of human gut microbiome, indicating that bacteria of human and animal origin intermingle in sewage. By assembling a near-complete genome of A. cryaerophilus, we show that the bacterium has accumulated a large number of antibiotic resistance genes (ARGs) probably enabling it to thrive in the wastewater. We also determined that a majority of ARGs was being expressed in sewage, suggestive of trace levels of antibiotics or other stresses that could act as a selective force that amplifies multidrug resistant bacteria in municipal sewage. Because all bacteria are not eliminated even after several rounds of wastewater treatment, ARGs in sewage could affect public health due to their potential to contaminate environmental water.


Sign in / Sign up

Export Citation Format

Share Document