scholarly journals Lithium Batteries Cooling by Phase Change Material Partially Filled with Metal Foam

2021 ◽  
Vol 312 ◽  
pp. 03002
Author(s):  
Bernardo Buonomo ◽  
Fabio d’Alesio ◽  
Oronzio Manca ◽  
Ferdinando Menale ◽  
Sergio Nardini

Electric cars can be a turning point for climate problems. One of the main problems of electric cars is the thermal control of the batteries, since below and above a certain temperature range, the vehicle’s range decreases abruptly, creating inconveniences to the owners of these cars. The thermal control of lithium batteries for electric cars must take into account both the problems of thermal rise due to the operation of the battery itself, and the climatic conditions outside the vehicle that negatively affect the performance of the car, reducing both the autonomy and the battery life. In this study, a thermal control system based on a phase change material (PCM) partially filled with metallic foam is investigated to evaluate its possible use in the cooling of lithium batteries. A two-dimensional model is considered to numerically study thermal control with different chargedischarge cycles. The metal foam partially fills the PCM. The governing equations, written assuming the local thermal equilibrium for the metal foam, are solved by the finite volume method using the ANSYS Fluent commercial code. Different cases are simulated for different values of the external convective heat transfer coefficient. The results, carried out for metal foams and PCM, are given in terms of temperature and liquid fraction. In addition, some comparisons with pure PCM and fully foam filled PCM are provided within the thermal control system to show the advantages of the composite thermal control system with PCM inside the metal foam.

Author(s):  
Bernardo Buonomo ◽  
Oronzio Manca ◽  
Ferdinando Menale ◽  
Francesco Moriello ◽  
Simone Mancin

Abstract This study attempts to control the temperature peaks due to the operation of the battery itself by examining a two-dimensional model to numerically investigate the thermal control of a lithium battery of a commercial electric car. The battery has the dimensions of 8 cm × 31 cm × 67 cm and its capacity is equal to 232 Ah with 5.3 kWh. Thermal control is achieved by means of an internal layer of copper or aluminum foam and phase change material (paraffin), placed on the top of the battery and the external surfaces are cooled by a convective flow. The governing equations, written assuming the local thermal equilibrium for the metal foam, are solved with the finite volume method using the commercial code Ansys-Fluent. Different cases are simulated for different thicknesses of the thermal control system and external convective heat transfer coefficient. The results are given in terms of temperature fields, liquid fraction, surface temperature profiles as a function of time and temperature distributions along the outer surface of the battery for the different cases. In addition, some comparisons with pure PCM are provided to show the advantages of the composite thermal control system with PCM inside the metal foam.


2021 ◽  
Vol 65 (2-4) ◽  
pp. 157-165
Author(s):  
Bernardo Buonomo ◽  
Oronzio Manca ◽  
Ferdinando Menale ◽  
Francesco Moriello ◽  
Sergio Nardini

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1508
Author(s):  
Mohammad Ghalambaz ◽  
Mohammad Shahabadi ◽  
S. A. M Mehryan ◽  
Mikhail Sheremet ◽  
Obai Younis ◽  
...  

The melting flow and heat transfer of copper-oxide coconut oil in thermal energy storage filled with a nonlinear copper metal foam are addressed. The porosity of the copper foam changes linearly from bottom to top. The phase change material (PCM) is filled into the metal foam pores, which form a composite PCM. The natural convection effect is also taken into account. The effect of average porosity; porosity distribution; pore size density; the inclination angle of enclosure; and nanoparticles’ concentration on the isotherms, melting maps, and the melting rate are investigated. The results show that the average porosity is the most important parameter on the melting behavior. The variation in porosity from 0.825 to 0.9 changes the melting time by about 116%. The natural convection flows are weak in the metal foam, and hence, the impact of each of the other parameters on the melting time is insignificant (less than 5%).


2020 ◽  
Vol 148 ◽  
pp. 987-1001 ◽  
Author(s):  
Pouyan Talebizadeh Sardari ◽  
Donald Giddings ◽  
David Grant ◽  
Mark Gillott ◽  
Gavin S. Walker

Fractals ◽  
2015 ◽  
Vol 23 (01) ◽  
pp. 1540003 ◽  
Author(s):  
CHENGBIN ZHANG ◽  
LIANGYU WU ◽  
YONGPING CHEN

The Sierpinski fractal is introduced to construct the porous metal foam. Based on this fractal description, an unsteady heat transfer model accompanied with solidification phase change in fractal porous metal foam embedded with phase change material (PCM) is developed and numerically analyzed. The heat transfer processes associated with solidification of PCM embedded in fractal structure is investigated and compared with that in single-pore structure. The results indicate that, for the solidification of phase change material in fractal porous metal foam, the PCM is dispersedly distributed in metal foam and the existence of porous metal matrix provides a fast heat flow channel both horizontally and vertically, which induces the enhancement of interstitial heat transfer between the solid matrix and PCM. The solidification performance of the PCM, which is represented by liquid fraction and solidification time, in fractal structure is superior to that in single-pore structure.


2021 ◽  
pp. 103592
Author(s):  
Tongyan Ren ◽  
Guotong Du ◽  
Qiyu Li ◽  
Yuechuan Wang ◽  
Xiaowei Fu ◽  
...  

2022 ◽  
Vol 48 ◽  
pp. 103882
Author(s):  
Adeel Arshad ◽  
Mark Jabbal ◽  
Hamza Faraji ◽  
Pouyan Talebizadehsardari ◽  
Muhammad Anser Bashir ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document