scholarly journals U-slot patch antenna with low RCS based on a metaferrite substrate

2019 ◽  
Vol 6 ◽  
pp. 20 ◽  
Author(s):  
Yujie Liu ◽  
Philip Beal ◽  
Henry Giddens ◽  
Yang Hao

Metamaterial ferrites or metaferrites are artificial magnetic materials which mimic the properties of ferrites at a certain frequency operation. Antenna engineers are therefore able to design and create artificial substrates which replicate the electrical properties of ferrites without actually using any in the construction. This is advantageous as ferrites can offer performance improvements to microstrip antennas, such as size reduction and wideband impedance matching. In this paper, a metaferrite substrate designed by the use of a genetic algorithm is presented. The metaferrite was optimized in order to obtain the magnetic responses at 9GHz, for its use as the substrate of a microstrip antenna. As an example, a U-slot patch antenna based on the metaferrite is demonstrated, which can achieve stable radiation and 14 dB radar cross section (RCS) reduction performance in the measurement.

2019 ◽  
Vol 11 (2) ◽  
pp. 165-175 ◽  
Author(s):  
Wafaa Mohammed Hashim ◽  
Asst. prof. Dr. Adheed Hasan Sallomi

a staircase patch microstrip antenna with slots is proposed to cover the 2G/3G/4G cellular mobile base station bands, when the antenna is excited with a transmission line, creates several modes these modes are composite to obtain a large bandwidth. The proposed antenna operates in the band from 0.86 GHz to 4.78 GHz with an impedance bandwidth of 138%. The use of staircase patch antenna is to achieve more attractive performance such as wider bandwidth, better impedance matching and better radiation. Inserting different slots to the patch of the antenna to enhance the gain and return loss. The gain is obtained ranging from 2.18 dBi to 5.3 dBi. Good radiation efficiencies ranging from 70% to 97% is achieved.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Lingfei Mo ◽  
Chenyang Li

Planar UHF RFID antimetal tag can be widely used for the metallic products or packages with metal material inside. A double loop inductive feed planar patch antenna is proposed for UHF RFID tag mounted on metallic objects. Compared to conventional microstrip antennas or PIFA antennas used for UHF RFID tags, the double loop inductive feed patch antenna has a planar structure, with no short via or short wall, which could decrease the manufacturing cost of the tags. The double loop inductive feed structure also increases the radiation performance of the planar antenna. Moreover, the double loop inductive feed structure makes the impedance of the patch antenna be tuned easily for conjugate impedance matching.


Author(s):  
T. Mary Neebha ◽  
M. Nesasudha

Radars demand low profile and light weight antenna subsystems. Microstrip antennas possess these characteristics and serve as an alternative to the bulky and heavy weight reflector/slotted waveguide array antennas, thus an ideal choice for radars. Here, a single line fed microstrip antenna with pierced corners is designed. This antenna has improved parameters compared to the conventional square microstrip antenna. The main problem encountered is in designing the patch antenna with optimum values for various antenna parameters. In order to solve this problem, an alternative solution used is Artificial Neural Networks (ANN). The antenna is also optimized using Particle Swarm Optimization (PSO). The parameters considered in all the cases are return loss (S11) and VSWR which was designed using FEKO software. The designed antennas are found to radiate in the C-band, which covers frequencies in the range 5-8GHz, applicable in most of the modern radars. The simulation design is carried out using CADFEKO suite.


2017 ◽  
Vol 7 (1.5) ◽  
pp. 176 ◽  
Author(s):  
Raj Gaurav Mishra ◽  
Ranjan Mishra ◽  
Piyush Kuchhal ◽  
N. Prasanthi Kumari

Microstrip antennas that can operate in single and multiple frequency bands are required in various wireless communication devices. A single patch, square shaped microstrip patch antenna having high directivity and gain is proposed in this paper. The geometry of proposed antenna is optimized using Genetic Algorithm (GA) to operate in X-Band for wideband applications. The proposed antenna design exhibits a wide operating bandwidth 550 MHz (simulated) and 450 MHz (measured), high gain and directivity of about 8.35 dB (simulated) making it suitable for wideband applications. The proposed antenna design works in X-band which has weatherproof characteristics and supports easy communication of voice, data, images and HD videos. The attractiveness of the GA design over the traditional design methods is its ability to achieve the desired performance by using a simple design of single patch antenna.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Sika Shrestha ◽  
Seong Ro Lee ◽  
Dong-You Choi

The growth of wireless communications in recent years has made it necessary to develop compact, lightweight multiband antennas. Compact antennas can achieve the same performance as large antennas do with low price and with greater system integration. Dual-frequency microstrip antennas for transmission and reception represent promising approach for doubling the system capacity. In this work, a miniaturized dual band antenna operable at 2.45 and 5.8 GHz is constructed by modifying the standard microstrip patch antenna geometry into a fractal structure. In addition to miniaturization and dual band nature, the proposed antenna also removes unwanted harmonics without the use of additional filter component. Using a finite-element-method-based high frequency structure simulator (HFSS), the antenna is designed and its performance in terms of return loss, impedance matching, radiation pattern, and voltage standing wave ratio (VSWR) is demonstrated. Simulation results are shown to be in close agreement with performance measurements from an actual antenna fabricated on an FR4 substrate. The proposed antenna can be integrated with a rectifier circuit to develop a compact rectenna that can harvest RF energy in both of these frequency bands at a reduction in size of 25.98% relative to a conventional rectangular patch antenna.


2018 ◽  
Vol 10 (9) ◽  
pp. 1042-1047 ◽  
Author(s):  
Jiakai Zhang ◽  
Haixiong Li ◽  
Qi Zheng ◽  
Jun Ding ◽  
Chenjiang Guo

AbstractIn this study, a new microstrip patch antenna with wideband radar cross-section (RCS) reduction is presented. The RCS of the proposed antenna was reduced by subtracting the current-direction slots of the patch, with the radiation performance sustained not only for the current-direction subtraction, but also for the no modification in the ground plane. Modified and reference antenna were fabricated and measured. The simulation and measurement results showed that the modified antenna reduced the in-band and out-band RCS simultaneously with no detriment to the radiation performance. In the frequency band from 3.9 to 8.1 GHz, the RCS of the modified antenna was reduced in the whole band compared with the RCS of the reference antenna. The maximum RCS reduction was 7 dB at a frequency of 6.7 GHz.


2019 ◽  
Vol 8 (3) ◽  
pp. 8796-8804

Microstrip antenna is one of the most popular types of printed antenna. It plays an excellent role in today’s world of wireless communication systems. Microstrip antenna offers the advantages of thin profile, light weight, low cost, ease of fabrication and compatibility with the integrated circuitry. In this paper, the design of a rectangular patch antenna based on flexible and non-flexible substrate is presented. First a simple rectangular shape patch antenna using microstrip feeding based on FR4 substrate is designed. The designed antenna operates at a center frequency 2.3 GHz with bandwidth ranging from 2.25 to 2.35 GHz (100 MHz). The same rectangular patch is subjected to two different flexible substrate i.e. Kapton polyimide film with thickness of 0.82 mm and Kapton polyimide film with thickness of 0.85 mm. With Kapton polyimide as substrate having thickness of 0.82 mm resulted in a center frequency of 2.4 GHz with bandwidth ranging from 2.36 to 2.45 GHz (90 MHz). With Kapton polyimide as substrate having thickness of 0.85 mm, the antenna provides a center frequency at 2.3 GHz, with bandwidth ranging from 2.25 to 2.35 GHz (100 MHz). The other radiational parameters (such as impedance matching, radiation pattern, radiation efficiency and gain) from all the three substrate are studied. The antenna based on FR4 substrate is finally fabricated and its results are compared with the simulated ones.


Author(s):  
MAHESH M. GADAG ◽  
LUBNA F. SHAIKH ◽  
KUMARI AAHALADIKA ◽  
KUNDAN KUMAR

Microstrip antennas are becoming increasingly useful these days as they can be printed directly on a circuit board. They are relatively inexpensive to manufacture and design because of the simple 2-dimensional physical geometry. This is a key feature of microstrip antenna to be used in wireless communication field. Thus bandwidth and gain improvement have become major design consideration for practical application of microstrip antennas. The purpose of this paper is to design a rectangular microstrip antenna with parasitic side patches using air coupling. IE3D simulation software is used for simulation and a comparison is made between the basic patch antenna and improved patch antennas.


Author(s):  
DWI ANDI NURMANTRIS ◽  
HEROE WIJANTO ◽  
BAMBANG SETIA NUGROHO

ABSTRAKMetode baru dalam mendesain suatu pattern reconfigurable antenna telah diteliti. Penelitian ini fokus pada optimasi antena patch lingkaran single layer pencatuan probe koaksial dengan mengintegrasikan 24 switch/shorting pin pada sisi patch yang disebut edge shorting pin dan 8 shorting pin membentuk lingkaran dengan radius tertentu dan selanjutnya disebut symmetrical control pin yang fungsinya sebagai metode penyepadan impedansi. Algoritma Genetika yang dikombinasikan dengan Finite Element Software digunakan untuk mengoptimasi kombinasi  switch, radius lingkaran symmetrical control pin, dan radius patch untuk mendapatkan kemampuan pattern reconfigurability. Antena ini menghasilkan 8 kemungkinan arah radiasi azzimuth dengan resolusi 45o dan arah elevasi 30o pada frekuensi 2,4 Ghz. Optimasi, simulasi, fabrikasi, dan pengukuran dilakukan untuk memverifikasi hasil penelitian.Kata kunci: Patch Lingkaran, Edge Shorting Pin, Symmetrical Control Pin, Algoritma Genetika, Pattern Reconfigurable ABSTRACTNew method for desaining pattern reconfigurable antenna was studied. This study focuses on the optimization of a single layer circular patch antenna with probe feed by integrating the 24 switch / shorting pin on the side of the patch that called Edge Shorting Pins and 8 shorting pins form circular line in such radius that called Symmetrical Control Pins as a impedance matching method. Genetic algorithm combined with the Finite Element Software is used to optimize the switch combination, the radius of circular line of symmetrical control pins, and the patch radius to obtain a pattern reconfigurability capabilities. This antenna produces 8 possible directions of azimuth radiation with a resolution of 45o and 30o elevation direction at a frequency of 2.4 GHz. Optimization, simulation, fabrication, and measurement was done to verify the results.Keywords: Circular Patch, Edge Shorting Pin, Symmetrical Control Pin, Genetic Algorithm, Pattern Reconfigurable


Sign in / Sign up

Export Citation Format

Share Document