scholarly journals Research on Formation Mechanism of Dynamic Response and Residual Stress of Sheet Metal Induced by Laser Shock Wave

2018 ◽  
Vol 167 ◽  
pp. 05007
Author(s):  
Aixin Feng ◽  
Yupeng Cao ◽  
Heng Wang ◽  
Zhengang Zhang

In order to reveal the quantitative control of the residual stress on the surface of metal materials, the relevant theoretical and experimental studies were carried out to investigate the dynamic response of metal thin plates and the formation mechanism of residual stress induced by laser shock wave. In this paper, the latest research trends on the surface residual stress of laser shock processing technology were elaborated. The main progress of laser shock wave propagation mechanism and dynamic response, laser shock, and surface residual stress were discussed. It is pointed out that the multi-scale characterization of laser and material, surface residual stress and microstructure change is a new hotspot in laser shock strengthening technology.

2018 ◽  
Vol 742 ◽  
pp. 54-65 ◽  
Author(s):  
Fengze Dai ◽  
Jie Geng ◽  
Xudong Ren ◽  
Jinzhong Lu ◽  
Shu Huang

2010 ◽  
Vol 44-47 ◽  
pp. 3114-3118
Author(s):  
De Jun Kong ◽  
Chao Zheng Zhou

The X70 pipeline steel welded joint was processed to strengthen with laser shock wave, the structures of welded joint by laser shock wave were observed with Scanning Electric Microscope (SEM), and its surface residual stresses was analyzed with X-ray diffraction (XRD), the residual stress distributions of welded joint by laser shock processing were discussed, and the strengthened mechanism of X70 pipeline welded joint by laser shock processing was investigated. The experimental results shown that the phenomenon of grain fine is produced in the surface of X70 pipeline steel welded joint by laser shock processing, and compressive residual stress is formed in its surface layer, and improves the distribution of residual stress, which is benefit to increasing the capability of stress corrosion resistance for X70 pipeline steel welded joint.


2019 ◽  
Vol 25 (5) ◽  
pp. 257-262 ◽  
Author(s):  
Jin-Su Kim ◽  
Ahmed A. Busnaina ◽  
Jin-Goo Park

2006 ◽  
Vol 1 (4) ◽  
pp. 448-451 ◽  
Author(s):  
Chao-jun Yang ◽  
Yong-kang Zhang ◽  
Jian-zhong Zhou ◽  
Ming-xiong Ni ◽  
Jian-jun Du ◽  
...  

2021 ◽  
pp. 66-72
Author(s):  

The processes of laser-shock-wave processing of NiTi alloys with shape memory effect are investigated by the methods of dimensional analysis and finite element modeling. The dependences of the depth of the plastic zone on the peak pressure in the shock wave and the duration of the laser pulse are obtained at different peak pressures. Keywords: shape memory alloys, laser-shock-wave processing, dimensional analysis, residual stresses, plastic zone depth. [email protected]


Author(s):  
Sai Kosaraju ◽  
Xin Zhao

Abstract A two-dimensional finite element model is developed to simulate the interaction between metal samples and laser-induced shock waves. Multiple laser impacts are applied at each location to increase plastically affected depth and compressive stress. The in-depth and surface residual stress profiles are analyzed at various repetition rates and spot sizes. It is found that the residual stress is not sensitive to repetition rate until it reaches a very high level. At extremely high repetition rate (100 MHz), the delay between two shock waves is even shorter than their duration, and there will be shock wave superposition. It is revealed that the interaction of metal with shock wave is significantly different, leading to a different residual stress profile. Stronger residual stress with deeper distribution will be obtained comparing with lower repetition rate cases. The effect of repetition rate at different spot sizes is also studied. It is found that with larger laser spot, the peak compressive residual stress decreases but the distribution is deeper at extremely high repetition rates.


Author(s):  
Yajun Fan ◽  
Youneng Wang ◽  
Sinisa Vukelic ◽  
Y. Lawrence Yao

Laser shock peening (LSP) is an innovative process which imparts compressive residual stresses in the processed surface of metallic parts to significantly improve fatigue life and fatigue strength of this part. In opposing dual sided LSP, the workpiece can be simultaneously irradiated or irradiated with different time lags to create different surface residual stress patterns by virtue of the interaction between the opposing shock waves. In this work, a finite element model, in which the hydrodynamic behavior of the material and the deviatoric behavior including work hardening and strain rate effects were considered was applied to predict residual stress distributions in the processed surface induced under various conditions of the opposing dual sided micro scale laser shock peening. Thus the shock waves from each surface will interact in different ways through the thickness resulting in more complex residual stress profiles. Additionally, when treating a thin section, opposing dual sided peening is expected to avoid harmful effects such as spalling and fracture because the pressures on the opposite surfaces of the target balance one another and prohibit excessive deformation of the target. In order to better understand the wave-wave interactions under different conditions, the residual stress profiles corresponding to various workpiece thicknesses and various irradiation times were evaluated.


Sign in / Sign up

Export Citation Format

Share Document