scholarly journals Compact high-power shipborne doppler lidar based on high spectral resolution techniques

2018 ◽  
Vol 176 ◽  
pp. 01020
Author(s):  
Songhua Wu ◽  
Bingyi Liu ◽  
Guangyao Dai ◽  
Shenguang Qin ◽  
Jintao Liu ◽  
...  

The Compact High-Power Shipborne Doppler Wind Lidar (CHiPSDWiL) based on highspectral-resolution technique has been built up at the Ocean University of China for the measurement of the wind field and the properties of the aerosol and clouds in the troposphere. The design of the CHiPSDWiL including the transceiver, the injection seeding, the locking and the frequency measurement will be presented. Preliminary results measured by the CHiPSDWiL are provided.

2020 ◽  
Vol 237 ◽  
pp. 01008 ◽  
Author(s):  
Holger Baars ◽  
Alexander Geiß ◽  
Ulla Wandinger ◽  
Alina Herzog ◽  
Ronny Engelmann ◽  
...  

On 22nd August 2018, the European Space Agency (ESA) launched the first direct detection Doppler wind lidar into space. Operating at 355 nm and acquiring signals with a dual channel receiver, it allows wind observations in clear air and particle-laden regions of the atmosphere. Furthermore, particle optical properties can be obtained using the High Spectral Resolution Technique Lidar (HSRL) technique. Measuring with 87 km horizontal and 0.25-2 km vertical resolution between ground and up to 30 km in the stratosphere, the global coverage of Aeolus observations shall fill gaps in the global observing system and thus help improving numerical weather prediction. Within this contribution, first results from the German initiative for experimental Aeolus validation are presented and discussed. Ground-based wind and aerosol measurements from tropospheric radar wind profilers, Doppler wind lidars, radiosondes, aerosol lidars and cloud radars are utilized for that purpose.


2020 ◽  
Vol 237 ◽  
pp. 06011
Author(s):  
D. Bruneau ◽  
J. Pelon ◽  
F. Blouzon ◽  
Q. Cazenave ◽  
H. Collomb ◽  
...  

High spectral resolution lidar (HSRL) are known to offer capabilities of separating attenuated aerosol and molecular backscattering so that particle extinction and backscattering can be separately retrieved. UV operation provides high energy in eye-safety conditions. Further to that, it could be important for most meteorological or environmental studies to get wind measurements at the same time. LNG is now the only HSR Doppler Lidar (HSRDL) system capable of this. Results obtained during ground-based and airborne measurements show that the backscatter and extinction coefficients at 355 nm can be measured with a relative precision better than 10% (adjusting altitude and time resolution from 60 m to 240 m and 30s to 2mn, respectively) in aerosol layers of 0.5 10−6 m−1 sr−1 backscatter coefficient from ground and aircraft. The same relative precision is obtained in cirrus clouds of a 10−5 m−1 sr−1 backscatter coefficient. The capacity of the system to perform wind velocity measurements has also been demonstrated with precisions in the range of 1 to 2 ms−1 in same conditions. We present the main characteristics and illustrate observational capabilities from ground-based and airborne measurements.


2020 ◽  
Vol 237 ◽  
pp. 07011
Author(s):  
Hajime Okamoto ◽  
Kaori Sato ◽  
Masahiro Fujikawa ◽  
Eiji Oikawa ◽  
Tomoaki Nishizawa ◽  
...  

We develop the synergetic ground-based active-sensor-system for the evaluation of observations by space-borne lidars. The system consists of second version of multi-field-view multiple-scattering polarization lidar (MFMSPL-2), multiple-field-of-view high spectral resolution polarization lidar, direct-detection Doppler wind lidar, coherent Doppler wind lidar and 94GHz cloud profiling radar. The system can simulate observed signals from sensors onboard the joint Japanese/European mission Earth Clouds, Aerosols and Radiation Explorer (EarthCARE). The observation system can provide unique opportunity to study interaction of cloud microphysics, aerosol microphysics, vertical air motion and vertical distribution of horizontal wind and it will lead to evaluate cloud-convective parameterization and to reduce uncertainties in climate change predictions.


2021 ◽  
Author(s):  
Holger Baars ◽  
Alexander Geiß ◽  
Anne Martin ◽  
Josh Walchester ◽  
Elizaveta Basharova ◽  
...  

<p>Der ESA-Satellit Aeolus wurde im August 2018 mit dem Ziel gestartet, durch globale Messungen von Windprofilen die Wettervorhersage zu verbessern. Dazu hat Aeolus das High-Spectral-Resolution (HSR) Doppler-Lidar ALADIN (Atmospheric Laser Doppler Instrument) an Bord, welches es ermöglicht, vertikale Profile einer Windkomponente (West-Ost) aktiv zu messen. Diese Messungen werden inzwischen von mehreren Wetterdiensten assimiliert und es konnte ein positiver Einfluss auf die Vorhersagen gezeigt werden. Zusätzlich zu den Windprofilen können mit diesem Lidar auch Aerosol- und Wolkenprofile als Nebenprodukte gemessen werden. Es ist das erste Mal, dass so eine komplexe Technik vom Weltall aus zum Einsatz kommt und bedarf daher einer ausgiebigen Validierung.</p><p><br>Ein wichtiger Beitrag zur Validierung der Wind- und Aerosolprodukte von Aeolus wurde dabei in dem Kooperationsprojekt EVAA (Experimentelle Validierung und Assimilation von Aeolus-Beobachtungen) zwischen der Ludwig-Maximilians-Universität München, dem deutschen Zentrum für Luft- und Raumfahrt (DLR), dem Deutschen Wetterdienst (DWD) sowie dem Leibniz-Institut für Troposphärenforschung (TROPOS) geleistet. Anhand von bodengebundenen Wind- und Aerosol-Referenzmessungen als auch durch Radiosonden, konnten wichtige Erkenntnisse über den zeitlichen Verlauf sowie die Charakteristik des systematischen und zufälligen Fehlers der Aeolus-Beobachtungen gewonnen werden. Durch die Assimilation der Aeolus-Messungen im Wettermodell ICON des DWD, konnte ihr Einfluss auf die Wettervorhersage quantifiziert werden.</p><p><br>In diesem Beitrag wollen wir die Ergebnisse von unseren Langzeit-Vergleichsmessungen mit Radiosonden in Leipzig, Punta Arenas (Chile) und Radar-Windprofilern über Deutschland präsentieren und das Potential und die Grenzen von Aeolus diskutieren. Um die Verbesserung der Wettervorhersage durch die neuartigen Windbeobachtungen zu quantifizieren, wird ihr Einfluss im Wettermodell ICON demonstriert.</p><p><br>Zusätzlich werden wir einen Einblick in die Möglichkeiten der Aerosolprofilmessungen von Aeolus gegeben. Dazu wird als Beispiel der Transport von Rauchaerosol von den Bränden in Kalifornien im Jahre 2020 bis nach Mitteleuropa diskutiert. Damals waren große Mengen Rauch über Leipzig gemessen wurden, die für eine sichtliche Abschwächung des Sonnenlichts sorgten. Diese Rauchschwaden konnten sowohl von Aeolus als auch mit einem bodengebundenen Forschungslidar, genannt PollyXT, beobachtet werden und sind daher ein hervorragendes Beispiel, um die Potentiale von Aeolus bzgl. Aerosol- und Wolkenmessungen zu diskutieren.</p>


2007 ◽  
Vol 46 (26) ◽  
pp. 6606 ◽  
Author(s):  
Albert Ansmann ◽  
Ulla Wandinger ◽  
Olivier Le Rille ◽  
Dulce Lajas ◽  
Anne Grete Straume

2016 ◽  
Vol 24 (17) ◽  
pp. 19322 ◽  
Author(s):  
Mingjia Shangguan ◽  
Haiyun Xia ◽  
Chong Wang ◽  
Jiawei Qiu ◽  
Guoliang Shentu ◽  
...  

2020 ◽  
Vol 59 (03) ◽  
pp. 1
Author(s):  
Ze-Hou Yang ◽  
Yong-Ke Zhang ◽  
Jie Zhou ◽  
Yong Chen ◽  
Guo-Juan Zhang ◽  
...  

2009 ◽  
Vol 26 (12) ◽  
pp. 2501-2515 ◽  
Author(s):  
Oliver Reitebuch ◽  
Christian Lemmerz ◽  
Engelbert Nagel ◽  
Ulrike Paffrath ◽  
Yannig Durand ◽  
...  

Abstract The global observation of profiles of the atmospheric wind speed is the highest-priority unmet need for global numerical weather prediction. Satellite Doppler lidar is the most promising candidate to meet the requirements on global wind profile observations with high vertical resolution, precision, and accuracy. The European Space Agency (ESA) decided to implement a Doppler wind lidar mission called the Atmospheric Dynamics Mission Aeolus (ADM-Aeolus) to demonstrate the potential of the Doppler lidar technology and the expected impact on numerical weather forecasting. An airborne prototype of the instrument on ADM-Aeolus was developed to validate the instrument concept and retrieval algorithms with realistic atmospheric observations before the satellite launch. It is the first airborne direct-detection Doppler lidar for atmospheric observations, and it is operating at an ultraviolet wavelength of 355 nm. The optical design is described in detail, including the single-frequency pulsed laser and the two spectrometers to resolve the Doppler frequency shift from molecular Rayleigh and aerosol Mie backscatter. The airborne prototype is representative of the spaceborne instrument, and their specific differences are discussed.


Sign in / Sign up

Export Citation Format

Share Document