Decoherence assisted spin squeezing generation in superposition of tripartite GHZ and W states
In the present paper, we study spin squeezing under decoherence in the superposition of tripartite maximally entangled GHZ and W states. Here we use amplitude damping, phase damping and depolarisation channel. We have investigated the dynamics of spin squeezing with the interplay of super-position and decoherence parameters with different directions of the mean spin vector. We have found the mixture of GHZ and W states is robust against spin squeezing generation for amplitude damping and phase damping channels for certain directions of the mean spin vector. However, the depolarisation channel performs well for spin squeezing generation and generates permanent spin squeezing in the superposition of GHZ and W states.