scholarly journals Rapid determination of the high cycle fatigue properties of high temperature aeronautical alloys by self-heating measurements

2018 ◽  
Vol 165 ◽  
pp. 22022
Author(s):  
Vincent Roué ◽  
Cédric Doudard ◽  
Sylvain Calloch ◽  
Frédéric Montel ◽  
Quentin Pujol D’Andrebo ◽  
...  

The determination of high cycle fatigue (HCF) properties of a material with standard method requires a lot of specimens, and could be really time consuming. The self-heating method has been developed in order to predict S–N–P curves (i.e., amplitude stress – number of cycles to failure – probability of failure) with only a few specimens. So the time-saving advantage of this method has been demonstrated on several materials, at room temperature. In order to reduce the cost and time of fatigue characterization at high temperature, the self-heating method is adapted to characterize HCF properties of a titanium alloy, the Ti-6Al-4V (TA6V), at different temperatures. So the self-heating procedure is adjusted to conduct tests with a furnace. Two dissipative phenomena can be observed on self-heating curves. Because of this, a two-scale probabilistic model with two dissipative mechanisms is used to describe them. The first one is observed for low amplitudes of cyclic loading, under the fatigue limit, and the second one for higher amplitudes where the mechanisms of fatigue damage are activated and are dissipating more energy. This model was developed on steel at room temperature. Even so, it is used to describe the self-heating curves of the TA6V at several temperatures.

1983 ◽  
Vol 69 (1) ◽  
pp. 107-116
Author(s):  
Masaru YAMAMOTO ◽  
Yuhji OOTSUKA ◽  
Ohmi MIYAGAWA ◽  
Dai FUJISHIRO

2004 ◽  
Vol 39 (20) ◽  
pp. 6253-6256 ◽  
Author(s):  
K. Kobayashi ◽  
K. Yamaguchi ◽  
M. Kimura ◽  
M. Hayakawa

Author(s):  
Yoshiaki Matsumori ◽  
Jumpei Nemoto ◽  
Yuji Ichikawa ◽  
Isamu Nonaka ◽  
Hideo Miura

Since high-cycle fatigue loads is applied to the pipes in various energy and chemical plants due to the vibration and frequent temperature change of fluid in the pipes, the high-cycle fatigue behavior of the alloys used for pipes should be understood quantitatively in the structural reliability design of the pipes. The purpose of this study, therefore, is to clarify the high-cycle fatigue strength and fracture mechanism of the modified 9Cr-1Mo steel at temperatures higher than 400°C. This material is one of the effective candidates for the pipes in fast breeder demonstration reactor systems. A rotating bending fatigue test was applied to samples at 50 Hz in air. The stress waveform was sinusoidal and the stress ratio was fixed at −1. The fatigue limit was observed at room temperature and it was about 420 MPa. This value was lower than the 0.2% proof stress of this alloy by about 60 MPa. This decrease can be attributed to the cyclic softening of this material. The limited cycles at knee point was about 8×105 cycles. All fracture was initiated from a single surface crack and no inclusion-induced fracture was observed in the fracture surface by SEM. Thus, the high-cycle fatigue design based on the fatigue limit may be applicable to the modified 9Cr-1Mo steel at room temperature. The fatigue limit of about 350 MPa was also observed at 400°C, and it appeared at about 107 cycles, while it appeared at around 106 cycles at room temperature. Thus, it was confirmed that the fatigue strength of this alloy decrease with temperature. However, the fatigue limit didn’t appear at 550°C up to 108 cycles. The fatigue limit may disappear in this alloy at 550°C. It is very important, therefore, to evaluate the ultra-high cycle fatigue strength of this alloy at temperatures higher than 400°C.


Sign in / Sign up

Export Citation Format

Share Document