scholarly journals Mixed convection over a horizontal circular cylinder embedded in porous medium immersed in a nanofluid with convective boundary conditions at lower stagnation point: A numerical solution

2018 ◽  
Vol 189 ◽  
pp. 02004
Author(s):  
Sarif Norhafizah Md ◽  
Sallhe Mohd Zuki ◽  
Roslinda Nazar

This study aims to examine the effect of governing parameters on the flow and heat transfer of the steady mixed convection flow embedded in porous medium with convective boundary conditions. The resulting system of nonlinear partial differential equations is solved numerically. The special case at the lower stagnation point of the cylinder is observed and the case where bottom surface of the cylinder is heated by convection from hot fluids is considered. Numerical solutions are obtained for the velocity, temperature and nanoparticle volume fraction profiles for two values of governing parameters namely convective parameter γ and Lewis number Le. It is found that as the convective parameter γ increases, velocity profile, temperature and nanoparticle volume fraction profile also increases.

2013 ◽  
Vol 29 (3) ◽  
pp. 403-409 ◽  
Author(s):  
T. Hayat ◽  
M. Waqas ◽  
S. A. Shehzad ◽  
A. Alsaedi

AbstractEffects of thermal radiation in mixed convection stagnation point flow over a moving surface subject to convective boundary conditions is addressed. Mathematical modeling is based upon constitutive equations of an incompressible Maxwell fluid. Nonlinear analysis is presented through implementation of homotopy analysis method. Numerical values of Local Nusselt number is computed and analyzed.


2015 ◽  
Vol 362 ◽  
pp. 67-75 ◽  
Author(s):  
A.R.M. Kasim ◽  
L.Y. Jiann ◽  
N.A. Rawi ◽  
A. Ali ◽  
S. Shafie

The investigation on mixed convection boundary layer of a viscoelastic fluid over a sphere which is embedded in porous medium under convective boundary condition is carried out in this paper. The boundary layer equations of viscoelastic fluid are an order higher than Newtonian (viscous) fluid and the adherence boundary conditions are insufficient to determine the solution of these equations completely. Hence, the augmentation on extra boundary conditions is needed in order to solve this problem. The governing partial differential equations are first transformed into non-dimensional forms and then solved numerically using the Keller-box method by augmenting extra boundary conditions at infinity. The numerical results obtained for limiting case are comparing with related outcomes in order to validate the present results. Results on the effects of the viscoelastic parameter in the presence of porosity and mixed convection on the skin friction and heat transfer as well as velocity and temperature profile have been discussed.


Sign in / Sign up

Export Citation Format

Share Document