scholarly journals Study the effect of angle of attack on flow characteristics at racing bike helmet using CFD

2018 ◽  
Vol 204 ◽  
pp. 06001
Author(s):  
Syamsuri ◽  
M Hasan Syafik ◽  
Yudho Putro Iswanto

At a cyclist drag racing champions greatly affect the speed of the bike, especially on the use of racing bike helmets. If the aerodynamic force from the racing bike helmet is getting smaller than the use of helmets on the bike racing will be more optimal and will affect the rate of the racer. In this study, numerical simulations were used to investigate the magnitude of the drag force that occurs around the surface of the helmet. With CFD software, 4 variations of attack angle 0°, 10°, 20° and 30° and variations of Reynold number 7.14x104, 1.00x105, and 1.16x105 are simulated to determine the flow characteristics of each state. The simulation results show that large area vortex is formed at the bottom of the helmet curve and dominates at the attack angle 30°. The result of the drag coefficient generated at the angle of attack 0° to 20° tends to decrease but at the attack angle 200 and 30° the drag coefficient increases.

2010 ◽  
Vol 29-32 ◽  
pp. 1344-1349 ◽  
Author(s):  
Zhe Zhang ◽  
Ying Chao Zhang ◽  
Jie Li

When vehicles run on road, they will be overtaken, cross by other vehicles or be impacted by crosswind. The other events of overtaking and in crosswind were investigated more deeply. A few of paper report the state of the research on this problem. Until now there are no any wind tunnel and road tests to study on road vehicle aerodynamics while crossing each other. Some numerical simulations were carried out by adopting technology of sliding interface and moving mesh. The method of numerical simulations was narrated in detail. The transient process of vehicles crossing each other was realized. Then the trends of aerodynamic coefficients changing were obtained from the flow field of simulation results. The quantificational changing of vehicles aerodynamic coefficients was obtained when they cross each other. The vehicles are sedan and coach. The simulation results indicated that the all aerodynamic coefficients of two vehicles changed large. The aerodynamic force was important to the vehicles’ handling stability when they cross each other.


2021 ◽  
Vol 13 ◽  
pp. 175682932110556
Author(s):  
Taiba Kouser ◽  
Yongliang Xiong ◽  
Dan Yang ◽  
Sai Peng

For micro air vehicles (MAV), the precise prediction of aerodynamic force plays an important role. The aerodynamic force of a comparative low Reynold number (Re) vehicle tends to be affected by the different flow modes. In this paper, the aerodynamic performance of a three-dimensional NACA0012 airfoil is studied numerically. A range of angles of attack ( α) 0°−25° and Reynolds number 1000 is considered. Mean and fluctuating coefficients of aerodynamic forces around NACA0012 airfoil are analyzed for different wake modes. The difference of aerodynamic forces between two and three-dimensional simulations are compared. The results show that the wake remains steady two-dimensional for lower angles of attack. At α = 9°, Von Karman vortex pattern is noticed. Flow transition to three-dimensional as the angle of attack increases from α = 13°. 3D wake is found to be stable with parallel shedding mode for 14°-17°. However, these modes become finer with the gradual increase in angle of incidence. While, wake loses its three-dimensional stability to chaotic with gradual increment in angle of attack afterwards.


2021 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Dhedhek Wahyu Aji Perdana ◽  
Marwan Effendy

This study aims to investigate experimentally and numerically the characteristics of the NACA 24112 airfoil. This study focuses on investigations of lift coefficient (CL), drag coefficient (CD), and CL / CD ratio and pressure, including flow visualisation around the airfoil. The study was conducted at an angle of attack ranging to -15°-20° and various Mach number at  0.0728 and 0.0809. The experimental test used a test specimen with a span dimension of 20 cm and a chord of 10 cm with an open wind tunnel. A total of 376,500 square elements with values ∆y + to 9.6 were successfully generated to achieve the accuracy of the simulation. The results showed that the CL and CD values obtained from the experimental and simulation results showed a similar trend. The CD value of the experimental results is greater than the simulation results. The CL and CD values will increase with increasing flow velocity and increasing the angle of attack. A stall occurs at an attack angle of 20°.


2011 ◽  
Vol 108 ◽  
pp. 41-47 ◽  
Author(s):  
Hai Bo Lu ◽  
Wei Qiang Liu

Forward-facing cavity mounted on the blunt nose of hypersonic vehicle is a good choice to reduce the stagnation heating. Presently, the study on hypersonic vehicles nose tip with forward-facing cavity mainly focus on its thermology characteristic, and little work can be found investigating the effect of cavity on aerodynamic force for a holistic vehicle. The CFD method is developed to investigate the effect of cavity geometry on aerodynamic performance of hypersonic vehicle with a forward-facing cavity on the nose-tip. Drag coefficient, lift coefficient and pitching moment coefficient of the vehicle for different attack angle are calculated. It is found that the cavity length to diameter (L/D) can not be a characteristic parameter in aerodynamic research, though it was used as a main characteristic parameter in investigation on the thermal protection. The length of the cavity L has little effect on aerodynamic characteristic of the vehicle, and the cavity diameter D has a crucial influence on the aerodynamic performance and the aerodynamic performance decrease with the D increasing. With the attack angle increasing, the drag coefficient, lift coefficient, pitching moment coefficient and lift-drag ratio of the hypersonic vehicle all increase.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Demissie Jobir Gelmecha ◽  
Ram Sewak Singh

AbstractIn this paper, the rigorous derivations of generalized coupled chiral nonlinear Schrödinger equations (CCNLSEs) and their modulation instability analysis have been explored theoretically and computationally. With the consideration of Maxwell’s equations and Post’s constitutive relations, a generalized CCNLSE has been derived, which describes the evolution of left-handed circularly polarized (LCP) and right-handed circularly polarized (RCP) components propagating through single-core nonlinear chiral fiber. The analysis of modulation instability in nonlinear chiral fiber has been investigated starting from CCNLSEs. Based on a theoretical model and numerical simulations, the difference on the modulation instability gain spectrum in LCP and RCP components through chiral fiber has been analyzed by considering loss and chirality into account. The obtained simulation results have shown that the loss distorts the sidebands of the modulation instability gain spectrum, while chirality modulates the gain for LCP and RCP components in a different manner. This suggests that adjusting chirality strength may control the loss, and nonlinearity simultaneously provides stable modulated pulse propagation.


2021 ◽  
Vol 3 (9) ◽  
Author(s):  
Mohammadreza Kasaei ◽  
Ali Ahmadi ◽  
Nuno Lau ◽  
Artur Pereira

AbstractBiped robots are inherently unstable because of their complex kinematics as well as dynamics. Despite many research efforts in developing biped locomotion, the performance of biped locomotion is still far from the expectations. This paper proposes a model-based framework to generate stable biped locomotion. The core of this framework is an abstract dynamics model which is composed of three masses to consider the dynamics of stance leg, torso, and swing leg for minimizing the tracking problems. According to this dynamics model, we propose a modular walking reference trajectories planner which takes into account obstacles to plan all the references. Moreover, this dynamics model is used to formulate the controller as a Model Predictive Control (MPC) scheme which can consider some constraints in the states of the system, inputs, outputs, and also mixed input-output. The performance and the robustness of the proposed framework are validated by performing several numerical simulations using MATLAB. Moreover, the framework is deployed on a simulated torque-controlled humanoid to verify its performance and robustness. The simulation results show that the proposed framework is capable of generating biped locomotion robustly.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Feifan Zhang ◽  
Wenjiao Zhou ◽  
Lei Yao ◽  
Xuanwen Wu ◽  
Huayong Zhang

In this research, a continuous nutrient-phytoplankton model with time delay and Michaelis–Menten functional response is discretized to a spatiotemporal discrete model. Around the homogeneous steady state of the discrete model, Neimark–Sacker bifurcation and Turing bifurcation analysis are investigated. Based on the bifurcation analysis, numerical simulations are carried out on the formation of spatiotemporal patterns. Simulation results show that the diffusion of phytoplankton and nutrients can induce the formation of Turing-like patterns, while time delay can also induce the formation of cloud-like pattern by Neimark–Sacker bifurcation. Compared with the results generated by the continuous model, more types of patterns are obtained and are compared with real observed patterns.


Author(s):  
Zhang ZhunHyok ◽  
Won CholJin ◽  
Ri CholUk ◽  
Kim CholJin ◽  
Kim RyongSop

The inclusion of aerospike on blunt nose body of hypersonic vehicle has been considered to be the simplest and most efficient technique for a concurrent reduction of both aeroheating and wave drag due to hypersonic speed. However, the thermal and mechanical behavior of aerospike structure under the coupling effect of aerodynamic force and aeroheating remains unclear. In this study, the thermal and structural response of aerospike mounted on the blunt nose body of hypersonic vehicle was numerically simulated by applying 3 D fluid-thermal-structural coupling method based on loosely-coupled strategy. In the simulation, the angle-of-attack and the spike’s length and diameter are differently set as α = 0°–10°, L/D = 1–2 and d/D = 0.05–0.15, respectively. Through the parametric study, the following results were obtained. Firstly, the increase of vehicle’s angle-of-attack and spike’s length unfavorably affect the thermal and structural response of aerospike. Secondly, the increase of spike’s diameter can improve its structural response characteristic. Finally, the aerospike with the angle-of-attack of 0° and the length and diameter of L/D = 1 and d/D = 0.15, respectively, is preferred in consideration of the effect of flight angle-of-attack and spike’s geometrical structure on the thermal and structural response of spike and the drag reduction of vehicle. The numerical calculation results provide a technical support for the safe design of aerospike.


Sign in / Sign up

Export Citation Format

Share Document