scholarly journals Path Planning Based on an Improved Ant Colony Algorithm

2018 ◽  
Vol 228 ◽  
pp. 01010
Author(s):  
Miaomiao Wang ◽  
Zhenglin Li ◽  
Qing Zhao ◽  
Fuyuan Si ◽  
Dianfang Huang

The classical ant colony algorithm has the disadvantages of initial search blindness, slow convergence speed and easy to fall into local optimum when applied to mobile robot path planning. This paper presents an improved ant colony algorithm in order to solve these disadvantages. First, the algorithm use A* search algorithm for initial search to generate uneven initial pheromone distribution to solve the initial search blindness problem. At the same time, the algorithm also limits the pheromone concentration to avoid local optimum. Then, the algorithm optimizes the transfer probability and adopts the pheromone update rule of "incentive and suppression strategy" to accelerate the convergence speed. Finally, the algorithm builds an adaptive model of pheromone coefficient to make the pheromone coefficient adjustment self-adaptive to avoid falling into a local minimum. The results proved that the proposed algorithm is practical and effective.

2020 ◽  
Vol 17 (3) ◽  
pp. 172988141989897 ◽  
Author(s):  
Shinan Zhu ◽  
Weiyi Zhu ◽  
Xueqin Zhang ◽  
Tao Cao

Path planning of lunar robots is the guarantee that lunar robots can complete tasks safely and accurately. Aiming at the shortest path and the least energy consumption, an adaptive potential field ant colony algorithm suitable for path planning of lunar robot is proposed to solve the problems of slow convergence speed and easy to fall into local optimum of ant colony algorithm. This algorithm combines the artificial potential field method with ant colony algorithm, introduces the inducement heuristic factor, and adjusts the state transition rule of the ant colony algorithm dynamically, so that the algorithm has higher global search ability and faster convergence speed. After getting the planned path, a dynamic obstacle avoidance strategy is designed according to the predictable and unpredictable obstacles. Especially a geometric method based on moving route is used to detect the unpredictable obstacles and realize the avoidance of dynamic obstacles. The experimental results show that the improved adaptive potential field ant colony algorithm has higher global search ability and faster convergence speed. The designed obstacle avoidance strategy can effectively judge whether there will be collision and take obstacle avoidance measures.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 815 ◽  
Author(s):  
Lanfei Wang ◽  
Jiangming Kan ◽  
Jun Guo ◽  
Chao Wang

Path planning is a fundamental issue in the aspect of robot navigation. As robots work in 3D environments, it is meaningful to study 3D path planning. To solve general problems of easily falling into local optimum and long search times in 3D path planning based on the ant colony algorithm, we proposed an improved the pheromone update and a heuristic function by introducing a safety value. We also designed two methods to calculate safety values. Concerning the path search, we designed a search mode combining the plane and visual fields and limited the search range of the robot. With regard to the deadlock problem, we adopted a 3D deadlock-free mechanism to enable ants to get out of the predicaments. With respect to simulations, we used a number of 3D terrains to carry out simulations and set different starting and end points in each terrain under the same external settings. According to the results of the improved ant colony algorithm and the basic ant colony algorithm, paths planned by the improved ant colony algorithm can effectively avoid obstacles, and their trajectories are smoother than that of the basic ant colony algorithm. The shortest path length is reduced by 8.164%, on average, compared with the results of the basic ant colony algorithm. We also compared the results of two methods for calculating safety values under the same terrain and external settings. Results show that by calculating the safety value in the environmental modeling stage in advance, and invoking the safety value directly in the path planning stage, the average running time is reduced by 91.56%, compared with calculating the safety value while path planning.


Sign in / Sign up

Export Citation Format

Share Document