scholarly journals Influence of transverse loading on the stability of a clamped rectangular plate

2018 ◽  
Vol 239 ◽  
pp. 01022
Author(s):  
Mikhail Sukhoterin ◽  
Sergey Baryshnikov ◽  
Tatiana Knysh ◽  
Natalia Pizhurina

Shapes of a square Kirchhoff plate with a clamped edge are obtained and analyzed, before and after losing stability in the case of a compound bending (uniform transverse loading in combination with edge compressive loading), as well as equilibrium forms and critical loadings only with clamping in the plate’s surface. Hyperbolic trigonometric series are used for solving. It was established that transverse loading causing small deformations does not affect the plate’s stability. The range of the critical state corresponds with an unlimited increase in bends of interior points of a plate. As critical loading, we suggest taking the one at which the bends at the plate’s center tend to infinity the most rapidly. As balanced loading, we suggest taking the one at which the plate acquires a new stable equilibrium form. A range of critical and balanced loadings of a square plate with a clamped edge was presented. The corresponding 3D forms of supercritical equilibrium of the given plate were obtained. A comparison with the results of other authors is given.

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Alexandre Rangel de Sousa ◽  
Géssica Patrícia Dornas ◽  
Isadora Cota Carvalho ◽  
Renata Francisca da Silva Santos

We observed the anti-UV action of beetroot extract in an ultra-high molecular weight (UHMWPE) matrix. The beetroot extract and the one prepared from annatto seed also acted efficiently as pigment to the same polymeric matrix. Neat UHMWPE and UHMWPE compounded with annatto and beet extract were compression molded and tensile specimens were obtained from the molded plates and submitted to UV radiation for up to 42 days. Tensile tests were performed and it was observed that the beet extract had a stabilizing action in the polymer compared to neat polymer and the one with annatto extract. Complementary analyses showed good homogenization of the extracts through the polymer matrix indicating the possibility of use as pigment, although the annatto extract appeared to be very unstable under irradiation. Spectroscopic characterization helped to explain the stability of the extracts before and after molding.


1961 ◽  
Vol 65 (612) ◽  
pp. 834-837 ◽  
Author(s):  
B. Saravanos

The lateral buckling of thin deep beams when subjected to a transverse loading system inducing bending initially in the plane of maximum flexural stiffness has been analysed on the assumption that the direction of application of the loads remains unchanged during small deformations of the beam (see, for example, treatments in Refs. 1 and 2). A typical case of a beam so loaded is illustrated in Fig. 1.


2007 ◽  
Vol 17 (03) ◽  
pp. 791-803 ◽  
Author(s):  
MINGSHU PENG ◽  
YUAN YUAN

In this paper, we consider a delayed discrete neural network of two identical neurons with excitory interactions. After investigating the stability of the given system, we establish a new scheme, and use the scheme to analyze the possible bifurcations occurring in the model. The process from its stable equilibrium to its multiple periodic patterns is explored clearly. A clarification for the asymptotically synchronous/asynchronous regions of such a system with ℤ2 symmetry is included.


Author(s):  
Y. Feng ◽  
X. Y. Cai ◽  
R. J. Kelley ◽  
D. C. Larbalestier

The issue of strong flux pinning is crucial to the further development of high critical current density Bi-Sr-Ca-Cu-O (BSCCO) superconductors in conductor-like applications, yet the pinning mechanisms are still much debated. Anomalous peaks in the M-H (magnetization vs. magnetic field) loops are commonly observed in Bi2Sr2CaCu2Oy (Bi-2212) single crystals. Oxygen vacancies may be effective flux pinning centers in BSCCO, as has been found in YBCO. However, it has also been proposed that basal-plane dislocation networks also act as effective pinning centers. Yang et al. proposed that the characteristic scale of the basal-plane dislocation networksmay strongly depend on oxygen content and the anomalous peak in the M-H loop at ˜20-30K may be due tothe flux pinning of decoupled two-dimensional pancake vortices by the dislocation networks. In light of this, we have performed an insitu observation on the dislocation networks precisely at the same region before and after annealing in air, vacuumand oxygen, in order to verify whether the dislocation networks change with varying oxygen content Inall cases, we have not found any noticeable changes in dislocation structure, regardless of the drastic changes in Tc and the anomalous magnetization. Therefore, it does not appear that the anomalous peak in the M-H loops is controlled by the basal-plane dislocation networks.


2020 ◽  
Vol 90 (5-6) ◽  
pp. 439-447 ◽  
Author(s):  
Andrew Hadinata Lie ◽  
Maria V Chandra-Hioe ◽  
Jayashree Arcot

Abstract. The stability of B12 vitamers is affected by interaction with other water-soluble vitamins, UV light, heat, and pH. This study compared the degradation losses in cyanocobalamin, hydroxocobalamin and methylcobalamin due to the physicochemical exposure before and after the addition of sorbitol. The degradation losses of cyanocobalamin in the presence of increasing concentrations of thiamin and niacin ranged between 6%-13% and added sorbitol significantly prevented the loss of cyanocobalamin (p<0.05). Hydroxocobalamin and methylcobalamin exhibited degradation losses ranging from 24%–26% and 48%–76%, respectively; added sorbitol significantly minimised the loss to 10% and 20%, respectively (p < 0.05). Methylcobalamin was the most susceptible to degradation when co-existing with ascorbic acid, followed by hydroxocobalamin and cyanocobalamin. The presence of ascorbic acid caused the greatest degradation loss in methylcobalamin (70%-76%), which was minimised to 16% with added sorbitol (p < 0.05). Heat exposure (100 °C, 60 minutes) caused a greater loss of cyanocobalamin (38%) than UV exposure (4%). However, degradation losses in hydroxocobalamin and methylcobalamin due to UV and heat exposures were comparable (>30%). At pH 3, methylcobalamin was the most unstable showing 79% degradation loss, which was down to 12% after sorbitol was added (p < 0.05). The losses of cyanocobalamin at pH 3 and pH 9 (~15%) were prevented by adding sorbitol. Addition of sorbitol to hydroxocobalamin at pH 3 and pH 9 reduced the loss by only 6%. The results showed that cyanocobalamin was the most stable, followed by hydroxocobalamin and methylcobalamin. Added sorbitol was sufficient to significantly enhance the stability of cobalamins against degradative agents and conditions.


1975 ◽  
Vol 34 (02) ◽  
pp. 426-444 ◽  
Author(s):  
J Kahan ◽  
I Nohén

SummaryIn 4 collaborative trials, involving a varying number of hospital laboratories in the Stockholm area, the coagulation activity of different test materials was estimated with the one-stage prothrombin tests routinely used in the laboratories, viz. Normotest, Simplastin-A and Thrombotest. The test materials included different batches of a lyophilized reference plasma, deep-frozen specimens of diluted and undiluted normal plasmas, and fresh and deep-frozen specimens from patients on long-term oral anticoagulant therapy.Although a close relationship was found between different methods, Simplastin-A gave consistently lower values than Normotest, the difference being proportional to the estimated activity. The discrepancy was of about the same magnitude on all the test materials, and was probably due to a divergence between the manufacturers’ procedures used to set “normal percentage activity”, as well as to a varying ratio of measured activity to plasma concentration. The extent of discrepancy may vary with the batch-to-batch variation of thromboplastin reagents.The close agreement between results obtained on different test materials suggests that the investigated reference plasma could be used to calibrate the examined thromboplastin reagents, and to compare the degree of hypocoagulability estimated by the examined PIVKA-insensitive thromboplastin reagents.The assigned coagulation activity of different batches of the reference plasma agreed closely with experimentally obtained values. The stability of supplied batches was satisfactory as judged from the reproducibility of repeated measurements. The variability of test procedures was approximately the same on different test materials.


Author(s):  
Lubos SMUTKA ◽  
Irena BENEŠOVÁ ◽  
Patrik ROVNÝ ◽  
Renata MATYSIK-PEJAS

Sugar is one of the most important elements in human nutrition. The Common Market Organisation for sugar has been a subject of considerable debate since its establishment in 1968. The European agricultural market has been criticized for its heavy regulations and subsidization. The sugar market is one of the most regulated ones; however, this will change radically in 2017 when the current system of production quotas will end. The current EU sugar market changed is structure during the last several decades. The significant number of companies left the market and EU internal sugar market became more concentrated. The aim of this paper is presentation characteristics of sugar market with respect to the supposed market failure – reduction in competition. The analysis also identifies the main drivers and determinants of the EU especially quota sugar market. In relation to paper’s aim the following results are important. The present conditions of the European sugar market have led to market failure when nearly 75 % (10 million tonnes) of the quota is controlled by five multinational companies only. These multinational alliances (especially German and French one) are also taking control over the production capacities of their subsidiaries. In most countries, this causes serious problems as the given quota is controlled by one or two producers only. This is a significant indicator of market imperfection. The quota system cannot overcome the problem of production quotas on the one hand and the demand on the other; furthermore, it also leads to economic inefficiency. The current EU sugar market is under the control of only Sudzucker, Nordzucker, Pfeifer and Langen, Tereos and ABF.


2013 ◽  
Vol 60 (2) ◽  
pp. 185-197 ◽  
Author(s):  
Paweł Sulikowski ◽  
Ryszard Maronski

The problem of the optimal driving technique during the fuel economy competition is reconsidered. The vehicle is regarded as a particle moving on a trace with a variable slope angle. The fuel consumption is minimized as the vehicle covers the given distance in a given time. It is assumed that the run consists of two recurrent phases: acceleration with a full available engine power and coasting down with the engine turned off. The most fuel-efficient technique for shifting gears during acceleration is found. The decision variables are: the vehicle velocities at which the gears should be shifted, on the one hand, and the vehicle velocities when the engine should be turned on and off, on the other hand. For the data of students’ vehicle representing the Faculty of Power and Aeronautical Engineering it has been found that such driving strategy is more effective in comparison with a constant speed strategy with the engine partly throttled, as well as a strategy resulting from optimal control theory when the engine is still active.


2019 ◽  
Author(s):  
Jose Julio Gutierrez Moreno ◽  
Marco Fronzi ◽  
Pierre Lovera ◽  
alan O'Riordan ◽  
Mike J Ford ◽  
...  

<p></p><p>Interfacial metal-oxide systems with ultrathin oxide layers are of high interest for their use in catalysis. In this study, we present a density functional theory (DFT) investigation of the structure of ultrathin rutile layers (one and two TiO<sub>2</sub> layers) supported on TiN and the stability of water on these interfacial structures. The rutile layers are stabilized on the TiN surface through the formation of interfacial Ti–O bonds. Charge transfer from the TiN substrate leads to the formation of reduced Ti<sup>3+</sup> cations in TiO<sub>2.</sub> The structure of the one-layer oxide slab is strongly distorted at the interface, while the thicker TiO<sub>2</sub> layer preserves the rutile structure. The energy cost for the formation of a single O vacancy in the one-layer oxide slab is only 0.5 eV with respect to the ideal interface. For the two-layer oxide slab, the introduction of several vacancies in an already non-stoichiometric system becomes progressively more favourable, which indicates the stability of the highly non-stoichiometric interfaces. Isolated water molecules dissociate when adsorbed at the TiO<sub>2</sub> layers. At higher coverages the preference is for molecular water adsorption. Our ab initio thermodynamics calculations show the fully water covered stoichiometric models as the most stable structure at typical ambient conditions. Interfacial models with multiple vacancies are most stable at low (reducing) oxygen chemical potential values. A water monolayer adsorbs dissociatively on the highly distorted 2-layer TiO<sub>1.75</sub>-TiN interface, where the Ti<sup>3+</sup> states lying above the top of the valence band contribute to a significant reduction of the energy gap compared to the stoichiometric TiO<sub>2</sub>-TiN model. Our results provide a guide for the design of novel interfacial systems containing ultrathin TiO<sub>2</sub> with potential application as photocatalytic water splitting devices.</p><p></p>


Filomat ◽  
2017 ◽  
Vol 31 (15) ◽  
pp. 4933-4944
Author(s):  
Dongseung Kang ◽  
Heejeong Koh

We obtain a general solution of the sextic functional equation f (ax+by)+ f (ax-by)+ f (bx+ay)+ f (bx-ay) = (ab)2(a2 + b2)[f(x+y)+f(x-y)] + 2(a2-b2)(a4-b4)[f(x)+f(y)] and investigate the stability of sextic Lie *-derivations associated with the given functional equation via fixed point method. Also, we present a counterexample for a single case.


Sign in / Sign up

Export Citation Format

Share Document