scholarly journals Analysis of the exhaust emissions from hybrid vehicle during RDE test

2019 ◽  
Vol 294 ◽  
pp. 02002
Author(s):  
Andrzej Ziolkowski ◽  
Pawel Daszkiewicz ◽  
Lukasz Rymaniak ◽  
Paweł Fuc ◽  
Pawel Ukleja

The introduction of the Euro 6c emission norm in 2017 resulted in a change of the type approval procedures. The most important of these was the replacement of the NEDC test with WLTC test with different procedures. In addition, the research was extended to include emission tests in real operating conditions (RDE). Such tests are enforced for heavy vehicles since 2014. PEMS apparatus was used for the measurements, which has been used by many research and development centers to carry out exhaust emissions measurements long before the applicable procedures were introduced. The article presents the methodology of conducting RDE measurements in accordance with the requirements defined by the Euro 6c norm. The focus in this case was primarily on the selection of the test route in the Poznań agglomeration. After determining its course, RDE measurements were made for a vehicle with a hybrid drive. The test route parameters have complied with the applicable requirements. All requirements were met and it was possible to analyze the exhaust emissions. The main focus being the determination of exhaust emissions from the entire test and in accordance with the EMROAD method. The CF (Comformity Factor) coefficients were also determined for both methods and compared with the applicable legal values. An analysis of the hybrid drive system operation was carried out, defining the degree of hybridization, which is the portion of the vehicle travel using only the electric motor of the drive system throughout the whole test. All analyzes were carried out in individual sections of the test: urban, rural and motorway.

2020 ◽  
Vol 182 (3) ◽  
pp. 54-58
Author(s):  
Andrzej Ziółkowski ◽  
Paweł Fuć ◽  
Piotr Lijewski ◽  
Łukasz Rymaniak ◽  
Paweł Daszkiewicz ◽  
...  

Road transport holds for the largest share in the freight transport sector in Europe. This work is carried out by heavy vehicles of various types. It is assumed that, in principle, transport should take place on the main road connections, such as motorways or national roads. Their share in the polish road infrastructure is not dominant. Rural and communal roads roads are the most prevalent. This fact formed the basis of the exhaust emissions and fuel consumption tests of heavy vehicles in real operating conditions. A set of vehicles (truck tractor with a semi-trailer) meeting the Euro V emission norm, transporting a load of 24,800 kg, was selected for the tests. The research was carried out on an non-urban route, the test route length was 22 km. A mobile Semtech DS instrument was used, which was used to measure the exhaust emissions. Based on the obtained results, the emission characteristics were determined in relation to the operating parameters of the vehicles drive system. Road emission, specific emission and fuel consumption values were also calculated.


2019 ◽  
Vol 52 (4) ◽  
pp. 109-115
Author(s):  
Łukasz Rymaniak ◽  
Paweł Fuć ◽  
Piotr Lijewski ◽  
Michalina Kamińska ◽  
Paweł Daszkiewicz ◽  
...  

The article analyzes the environmental costs which consisted of determining the annual cost for gases and particles released into the atmosphere by city buses meeting the Euro VI norm. To this end, exhaust emissions of a city bus equipped with a conventional drive system were performed. The vehicle had a length of 18m and was powered by a CI engine with a swept volume of 10,5 dm3, with a maximum power of 240 kW. In order to measure the ecological indicators, tests were performed in real driving conditions using the PEMS system. The apparatus made it possible to measure the concentration of gaseous compounds and particulate matter in the exhaust, which made it possible to determine the road exhaust emissions of the tested vehicle. The research was carried out on a test route including urban and suburban roads in accordance with legislative guidelines. The measurements showed that the bus met the exhaust emission limits determined on the basis of measuring windows defined in relation to the work generated by the drive system. In addition to information on the emissivity of the vehicle, the annual emissions from city buses meeting the Euro VI standard in Poland were also estimated. The information contained in the central vehicle register for the number of vehicles registered in Poland that meet the latest emission standards has been used for this purpose.


2019 ◽  
Vol 178 (3) ◽  
pp. 61-66
Author(s):  
Wojciech GIS ◽  
Jacek PIELECHA ◽  
Jerzy MERKISZ ◽  
Stanisław KRUCZYŃSKI ◽  
Maciej GIS

In the regulations concerning approval of light vehicles starting from September 2019 it will be necessary to conduct exhaust emis-sions tests both on a chassis dynamometer and for real driving emissions. It is a legislative requirement set forth in EU regulations for the purpose of the RDE (Real Driving Emissions) procedure. To decide on the RDE route for the purpose of the LV exhaust emissions tests many requirements must be fulfilled, regarding for ex-ample external temperature and the topographic height of the tests, driving style (driving dynamic parameters), trip duration, length of respective test sections (urban, rural, motorway, etc.). The works on outlining RDE routes are continued across the country in various research centres. Specifying the RDE route for test purposes, i.e. works in which the authors of this article are actively involved, has become a major challenge for future approval surveys concerning the assessment of hazardous emissions from light vehicles and for development studies focusing on – for example – the consumption of energy in electric and hybrid vehicles. The vehicle load was consistent with the requirements of the standard and included the aforesaid measurement device, the driver and the operator of PEMS. The tests were carried out on working days. The streets and roads used for the tests were hard-surfaced. Meas-urements were performed in accordance with the requirements of RDE packages (Package 1–4), i.e. taking into account – among others the engine cold start. The article discusses the method of outlining the test route fulfilling the specific requirements for RDE testing. Chosen results of ex-haust emissions from a passenger car with a spark-ignition engine along the defined RDE test route have been provided. The tests discussed in the article are introductory in the area of RDE tests and provide an introduction into further studies of exhaust emissions and energy consumption in real driving conditions in conventional vehicles and vehicles with alternative engines, e.g. hybrid and electric vehicles.


1998 ◽  
Vol 124 (1) ◽  
pp. 132-140 ◽  
Author(s):  
Izhak Bucher

This paper deals with the optimization of vibrating structures as a mean for minimizing unwanted vibration. Presented in this work is a method for automatic determination of a set of preselected design parameters affecting the geometrical layout or shape of the structure. The parameters are selected to minimize the dynamic response to external forcing or base motion. The presented method adjusts the structural parameters by solving an optimization problem in which the constraints are dictated by engineering considerations. Several constraints are defined so that the static deflection, the stress levels and the total weight of the structure are kept within bounds. The dynamic loading acting upon the structure is described in this work by its power spectral density, with this representation the structure can be tailored to specific operating conditions. The uncertain nature of the excitation is overcome by combining all possible spectra into one PSD encompassing all possible loading patterns. An important feature of the presented method is its numerical efficiency. This feature is essential for any reasonably sized problem as such problems are usually described by thousands of degrees of freedom arising from a finite-element idealization of the structure. In this paper, efficient, closed form expressions, for the cost function and its gradients are derived. Those are computed with a partial set of eigenvectors and eigenvalues thus increasing the efficiency further. Several numerical examples are presented where both shape optimization and the selection of discrete components are illustrated.


2004 ◽  
Vol 128 (1) ◽  
pp. 57-63 ◽  
Author(s):  
K. Mathioudakis ◽  
Ph. Kamboukos

A variety of methods can be used for the diagnosis of faults in gas path components of gas turbines. Problems that are common for diagnostic method implementation are the choice of measured quantities, choice of health parameters, and choice of operating conditions for data retrieval. The present paper introduces some general principles for evaluation of the effectiveness of different diagnostic schemes. They encompass criteria proposed in past publications, while they offer additional possibilities for assessment of diagnostic effectiveness in various situations. The method is based on the evaluation of the behavior of linear systems, which are a good approximation of the nonlinear ones for small deviations and employs the concept of system condition number to formulate criteria. The determination of limits for this number for establishing system condition criteria and quantification of observability is examined, on the basis of uncertainty propagation. Sample problems evaluated are: maximizing effectiveness of individual component identification from a multiplicity of available measurements, selection of individual operating points for multipoint applications.


2017 ◽  
Vol 168 (1) ◽  
pp. 21-26
Author(s):  
Jerzy MERKISZ ◽  
Łukasz RYMANIAK

The article presents a study of a city bus in real operating conditions (RDE) from the perspective of the latest regulations for the assessment of specific emissions compliance for heavy-duty vehicles (Euro VI standard). The object of the research was a serial configuration hybrid drive vehicle. Measurements were made in the real driving conditions in Poznan agglomeration. The latest mobile equipment PEMS was used for the measurements. This article presents the details of the EU 582/2011 Procedure in operational conformity assessment, the methodology of the study was discussed, and the obtained results were presented, both in terms of vehicle operating conditions and engine operation, as well as specific emissions evaluation.


2021 ◽  
Author(s):  
Andrzej Bieniek ◽  
Mariusz Graba ◽  
Jarosław Mamala ◽  
Krzysztof Prażnowski ◽  
Krystian Hennek

The analysis of energy consumption in a hybrid drive system of a passenger car in real road conditions is an important factor determining its operational indicators. The article presents energy consumption analysis of a car equipped with an advanced Plug-in Hybrid Drive System (PHEV), driving in real road conditions on a test section of about 51 km covered in various environmental conditions and seasons. Particular attention was paid to the energy consumption resulting from the cooperation of two independent drive units, analyzed in terms of the total energy expenditure. The energy consumption obtained from fuel and energy collected from the car’s batteries for each run over the total distance of 12,500 km was summarized. The instantaneous values of energy consumption for the hybrid drive per kilometer of distance traveled in car’s real operating conditions range from 0.6 to 1.4 MJ/km, with lower values relating to the vehicle operation only with electric drive. The upper range applies to the internal combustion engine, which increases not only the energy expenditure in the TTW (Tank-to-Wheel) system, but also CO2 emissions to the environment. Based on the experimental data, the curves of total energy consumption per kilometer of the road section traveled were determined, showing a close correlation with the actual operating conditions. Obtained values were compared with homologation data from the WLTP test of the tested passenger car, where the average value of energy demand is 1.1 MJ/km and the CO2 emission is 23 g/km.


2021 ◽  
Author(s):  
Jonghyun Kim ◽  
Paolo Scalea ◽  
Chulhwan Hwang ◽  
Jeongmoon Kim

Abstract Objectives/Scope This paper describes the successful replacement of Mono Ethylene Glycol (MEG) by Kinetic Hydrate Inhibitor (KHI) to guarantee flow assurance in the Shwe field subsea production system, offshore Myanmar. It covers the initial difficulties experienced with MEG, specific field conditions, the comprehensive KHI selection process and testing up to field application and operation. Methods, Procedures, Process MEG used for hydrate inhibition in the field's subsea flowline was originally regenerated in the topside facility, however contamination of the MEG with salts from formation water was causing process upsets. The option of installing a reclamation package presented many challenges and, after review of field conditions, the application of a KHI was considered as a promising alternative to MEG. With the engagement of specialist chemical suppliers a broad and challenging series of laboratory, as well as field tests, was carried out to select a suitable product. Finally a dedicated permanent injection skid was installed to guarantee stable KHI delivery and production. Results, Observations, Conclusions The difficulties caused by salt contamination of the MEG system, combined with the intricate field logistics at the remote site offshore Myanmar, entailed a speedy solution. This combined with suitable operating parameters of the field; i.e. low water content, high wellhead flowing temperatures, subcooling within known KHI operating range, ensured KHI was an economical solution. Nevertheless from desktop study to successful field application a series hurdles had to be crossed, including performance and compatibility tests, simulating all the expected Shwe Offshore Platform (SHP) operating conditions: Determination of Hydrate Equilibrium Temperature (HET); Induction Time Autoclave test for the required residence time in the presence of Corrosion Inhibitor (CI); Hot Injection ests at wellhead operating temperature; Thermal stability tests for topsides and condensate disposal system; Umbilical material compatibility tests; Compatibility of KHI with incumbent products (MEG and CI). Testing of a range of products, carried out by specialist chemical supplier, resulted in the selection of a qualified product, followed by a successful field application testing programme. Seven years after its introduction, KHI has helped achieve optimum field uptime and reduced operational costs as well as eased logistics constraints. Novel/Additive Information KHI is not new to the Oil & Gas industry, however information on its selection and application is not widely available. This paper sheds light on the steps to be considered when evaluating KHI as a suitable hydrate inhibitor, as well as the detailed laboratory tests for proper selection of a product. The intent is to help operators who are facing challenges with hydrate inhibition and could revert to KHI as an alternative.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 935
Author(s):  
Monika Andrych-Zalewska ◽  
Zdzislaw Chlopek ◽  
Jerzy Merkisz ◽  
Jacek Pielecha

The paper describes the methodology of research of exhaust emissions from a combustion engine under engine states determined by the vehicle actual operation in the RDE test. The processes of quantities determining the vehicle motion and engine states have been recorded, along with the exhaust emission intensity. Based on the developed research methodology, zero-dimensional characteristics of the processes of the emission intensity have been determined under the conditions of urban, rural and motorway traffic, as well as in the entire test. The authors also determined the average specific distance exhaust emissions under the conditions of urban, rural and motorway traffic, as well as in the entire test. Based on the above results, the unique characteristics of the relation of the average specific distance emissions and the average vehicle speed have been obtained. The obtained characteristics may be used in the modeling of exhaust emissions from motor vehicles under actual traffic conditions. The authors also explored the sensitivity of the average specific distance emissions to the vehicle driving style.


Author(s):  
A. V. Petukhov

The results of many years of research in the field of formalizing the task of selecting automated systems for various areas of design and office activities are given. The purpose of the study is the development of methods for qualitative and quantitative evaluation when choosing an automated system, taking into accounts the operating conditions and customer requirements. Qualitative assessment is based on the theory of choice and decision making, which examines the mathematical models of this type of activity. In view of the fact that in the problem under consideration, many alternatives, which are automated systems, are known, it can be related to the choice problem. The peculiarity of this approach is that it does not require a complete restoration of the principle of optimality, but allows us to confine ourselves to information sufficient to identify the optimal variant. The quantitative assessment is based on the determination of the projected annual economic effect from the introduction of an automated system. The described technique can be used by enterprises and organizations in the evaluation of automated systems at the stage preceding the tender for their purchase.


Sign in / Sign up

Export Citation Format

Share Document