scholarly journals Thermal effects of an innovative green wall on building energy performance

2016 ◽  
Vol 18 (1) ◽  
pp. 104 ◽  
Author(s):  
R. Djedjig ◽  
M. El Ganaoui ◽  
R. Belarbi ◽  
R. Bennacer

Green walls and green roofs are innovative construction technologies involving the use environmentally friendly materials. In addition to their aesthetical and environmental benefits, green walls have significant thermal effects on buildings and heat islands within high-density urban areas. In this paper, we study the impact of an innovative green wall system on building energy performance. These green walls have specific composition and particular geometry that can lead to higher thermal performances and therefore more significant impact on building energy performance. The development, validation and prior integration of a hygrothermal green wall model in a transient building simulation tool make possible the assessment of the energy performance of buildings when covered by green walls. The used model was adapted to be the particular forms and composition of the studied green walls. In parallel, this type of green walls has been installed on a one tenth building mockup to be experimented. The aim of the experiment is to measure the thermal effects and to calibrate some parameters of the numerical model. The results highlight the thermal benefits of this kind of green walls in summer condition. They reduce annual energy demand of building up to 37% for hot climates.

2020 ◽  
Vol 12 (17) ◽  
pp. 7153
Author(s):  
David Bienvenido-Huertas

State regulations play an important role to guarantee an appropriate building energy performance. As for the Spanish regulation, the limitation of energy consumption should be analyzed with simulation tools by using operational profiles. The profile of operational conditions of HVAC systems in residential buildings limits the use of heating and cooling systems. This paper studied the limitations of the residential profile in energy assessment processes through simulation tools. A case study was analyzed with three operational approaches and was placed in 8131 Spanish cities. The results showed that the use limitations of cooling systems lead to ignorance of an important percentage contribution in the cooling energy demand in some months of the year. The use of an operational profile with an extended calendar for cooling systems for the entire year would imply a more appropriate knowledge of the building energy performance in order to know the fulfilment of the state regulation and its correct energy classification.


Buildings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 189 ◽  
Author(s):  
Javanroodi ◽  
M.Nik

Urbanization trends have changed the morphology of cities in the past decades. Complex urban areas with wide variations in built density, layout typology, and architectural form have resulted in more complicated microclimate conditions. Microclimate conditions affect the energy performance of buildings and bioclimatic design strategies as well as a high number of engineering applications. However, commercial energy simulation engines that utilize widely-available mesoscale weather data tend to underestimate these impacts. These weather files, which represent typical weather conditions at a location, are mostly based on long-term metrological observations and fail to consider extreme conditions in their calculation. This paper aims to evaluate the impacts of hourly microclimate data in typical and extreme climate conditions on the energy performance of an office building in two different urban areas. Results showed that the urban morphology can reduce the wind speed by 27% and amplify air temperature by more than 14%. Using microclimate data, the calculated outside surface temperature, operating temperature and total energy demand of buildings were notably different to those obtained using typical regional climate model (RCM)–climate data or available weather files (Typical Meteorological Year or TMY), i.e., by 61%, 7%, and 21%, respectively. The difference in the hourly peak demand during extreme weather conditions was around 13%. The impact of urban density and the final height of buildings on the results are discussed at the end of the paper.


2021 ◽  
Vol 10 (10) ◽  
pp. 709
Author(s):  
Deng Wang ◽  
Guoqin Zhang ◽  
Tao Lin ◽  
Xinyue Hu ◽  
Zhuoqun Zhao ◽  
...  

Continuous growth of building energy consumption CO2 emission (BECCE) threatens urban sustainable development. Urban form is an important factor affecting BECCE. Compactness is a significant urban morphological characteristic. There is currently a lack of research on the effect of urban three-dimensional (3D) compactness on BECCE. To clarify the research value of 3D compactness, we investigated whether 3D compactness has a stronger impact on BECCE than two-dimensional (2D) compactness. A total of 288 buildings of the People’s Bank of China (PBOC) were divided into 5 zones according to building climate demarcation. As BECCE is affected mainly by four aspects (socioeconomic condition, building features, macroclimate, and urban form), the BECCE driven by urban form (BECCE-f) in each zone was calculated firstly using the partial least square regression model. Normalized compactness index (NCI) and normalized vertical compactness index (NVCI) were calculated with Python to quantify urban 2D and 3D compactness within a 1 km buffer of PBOC buildings. The mean NCI and NVCI values of each zone were adopted as 2D and 3D compactness of this zone. Gray correlation analysis of the five zones showed that the connection between the NVCI and BECCE-f is stronger than that between NCI and BECCE-f. Based on this, we believe that the emphasis of later research should be shifted to urban 3D form, not just 2D elements. 3D form can describe the real urban form in a more accurate and detailed manner. Emphasizing 3D morphological characteristics in studies of the relationship between urban form and building energy performance is more meaningful and valuable than only considering 2D characteristics. The impact mechanism of urban form on BECCE-f should also be analyzed from the perspective of 3D form. This study also provides beneficial solutions to building energy saving and low-carbon building construction.


2017 ◽  
Vol 39 (4) ◽  
pp. 492-500 ◽  
Author(s):  
Roger Hitchin

This Technical Note describes a framework for handling the inherent complexities of carbon emission and primary energy factors for networked electricity supply systems within building energy codes and similar policy instruments. The proposed framework reflects the main characteristics of carbon emissions from such networked supplies, while retaining a level of complexity (and simplification) comparable to that of procedures used in existing building energy codes. The main issues that are addressed are the time-varying nature of factors for networked supply, the impact of variability and curtailment for variable and intermittent renewable sources of electricity and relationship between “marginal” factors and “average” factors. These are important issues as the currently common use of annual system-average factors can result in misleading guidance as to the most effective ways of reducing carbon emissions or primary energy demand. The note first explains the relationship between building energy performance ratings and networked electric supplies. It then discusses the characteristics of electricity demand and the networked supply systems before proposing and discussing the framework. Practical application: A framework that can improve the reliability of building energy performance rating based on carbon emissions or primary energy factors.


2019 ◽  
Vol 11 (9) ◽  
pp. 2519 ◽  
Author(s):  
Tsoka ◽  
Tsikaloudaki ◽  
Theodosiou

Replacing conventional pavements with the corresponding high albedo ones constitutes a well-known technique to improve outdoor thermal environment of modern cites. Since most of the existing studies assess the impact of the high albedo pavements at the pedestrian’s height and with respect to thermal comfort, this study aims to examine the effect of the application of highly reflective pavements on the heating and cooling energy needs of a building unit, located inside a dense urban area. Aiming at a higher accuracy of the energy performance simulations, an integrated computational method between ENVI-met model, Meteonorm weather data generator and Energy Plus software is established, to consider the site-specific microclimatic characteristics of the urban areas. The analysis is performed both for the design and the aged albedo values as significant changes may occur due to aging process. The analysis revealed that the application of cool materials on the ground surfaces only marginally affects the energy performance of the examined building unit, both for the design and the aged albedo value; changes on the annual heating and cooling energy demand, for both albedo scenarios did not exceed 1.5% revealing the limited potential of cool pavements regarding the improvement of the energy performance of urban building units.


Sign in / Sign up

Export Citation Format

Share Document