scholarly journals Branch-and-Cut-and-Price algorithms for the preemptive RCPSP

2018 ◽  
Vol 52 (2) ◽  
pp. 513-528
Author(s):  
Pierre Fouilhoux ◽  
A.Ridha Mahjoub ◽  
Alain Quilliot ◽  
Hélène Toussaint

In this article, we address the preemptive Resource-Constrained Precedence Scheduling Problem. We propose two mixed integer formulations containing an exponential number of variables and inequalities. An antichain is a set of pairwise incomparable elements with respect to the precedence constraints. In the first formulation, the integer variables are associated with the antichains. For the second, the integer variables are limited to a particular subset of antichains. We propose two Branch-and-Cut-and-Price algorithms for each of these formulations. We introduce some valid inequalities in order to reinforce the second formulation. Finally, we give some computational results on instances of the PSPLIB and compare the formulations.

Constraints ◽  
2021 ◽  
Author(s):  
Jana Koehler ◽  
Josef Bürgler ◽  
Urs Fontana ◽  
Etienne Fux ◽  
Florian Herzog ◽  
...  

AbstractCable trees are used in industrial products to transmit energy and information between different product parts. To this date, they are mostly assembled by humans and only few automated manufacturing solutions exist using complex robotic machines. For these machines, the wiring plan has to be translated into a wiring sequence of cable plugging operations to be followed by the machine. In this paper, we study and formalize the problem of deriving the optimal wiring sequence for a given layout of a cable tree. We summarize our investigations to model this cable tree wiring problem (CTW). as a traveling salesman problem with atomic, soft atomic, and disjunctive precedence constraints as well as tour-dependent edge costs such that it can be solved by state-of-the-art constraint programming (CP), Optimization Modulo Theories (OMT), and mixed-integer programming (MIP). solvers. It is further shown, how the CTW problem can be viewed as a soft version of the coupled tasks scheduling problem. We discuss various modeling variants for the problem, prove its NP-hardness, and empirically compare CP, OMT, and MIP solvers on a benchmark set of 278 instances. The complete benchmark set with all models and instance data is available on github and was included in the MiniZinc challenge 2020.


Author(s):  
Yannik Rist ◽  
Michael A. Forbes

This paper proposes a new mixed integer programming formulation and branch and cut (BC) algorithm to solve the dial-a-ride problem (DARP). The DARP is a route-planning problem where several vehicles must serve a set of customers, each of which has a pickup and delivery location, and includes time window and ride time constraints. We develop “restricted fragments,” which are select segments of routes that can represent any DARP route. We show how to enumerate these restricted fragments and prove results on domination between them. The formulation we propose is solved with a BC algorithm, which includes new valid inequalities specific to our restricted fragment formulation. The algorithm is benchmarked on existing and new instances, solving nine existing instances to optimality for the first time. In comparison with current state-of-the-art methods, run times are reduced between one and two orders of magnitude on large instances.


2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Huizhi Ren ◽  
Shenshen Sun

A special parallel production lines scheduling problem is studied in this paper. Considering the time window and technical constraints, a mixed integer linear programming (MILP) model is formulated for the problem. A few valid inequalities are deduced and a hybrid mixed integer linear programming/constraint programming (MILP/CP) decomposition strategy is introduced. Based on them, a hybrid integer programming/genetic algorithm (IP/GA) approach is proposed to solve the problem. At last, the numerical experiments demonstrate that the proposed solution approach is effective and efficient.


Author(s):  
Qinxiao Yu ◽  
Yossiri Adulyasak ◽  
Louis-Martin Rousseau ◽  
Ning Zhu ◽  
Shoufeng Ma

This paper studies the team orienteering problem, where the arrival time and service time affect the collection of profits. Such interactions result in a nonconcave profit function. This problem integrates the aspect of time scheduling into the routing decision, which can be applied in humanitarian search and rescue operations where the survival rate declines rapidly. Rescue teams are needed to help trapped people in multiple affected sites, whereas the number of people who could be saved depends as well on how long a rescue team spends at each site. Efficient allocation and scheduling of rescue teams is critical to ensure a high survival rate. To solve the problem, we formulate a mixed-integer nonconcave programming model and propose a Benders branch-and-cut algorithm, along with valid inequalities for tightening the upper bound. To solve it more effectively, we introduce a hybrid heuristic that integrates a modified coordinate search (MCS) into an iterated local search. Computational results show that valid inequalities significantly reduce the optimality gap, and the proposed exact method is capable of solving instances where the mixed-integer nonlinear programming solver SCIP fails in finding an optimal solution. In addition, the proposed MCS algorithm is highly efficient compared with other benchmark approaches, whereas the hybrid heuristic is proven to be effective in finding high-quality solutions within short computing times. We also demonstrate the performance of the heuristic with the MCS using instances with up to 100 customers. Summary of Contribution: Motivated by search and rescue (SAR) operations, we consider a generalization of the well-known team orienteering problem (TOP) to incorporate a nonlinear time-varying profit function in conjunction with routing and scheduling decisions. This paper expands the envelope of operations research and computing in several ways. To address the scalability issue of this highly complex combinatorial problem in an exact manner, we propose a Benders branch-and-cut (BBC) algorithm, which allows us to efficiently deal with the nonconcave component. This BBC algorithm is computationally enhanced through valid inequalities used to strengthen the bounds of the BBC. In addition, we propose a highly efficient hybrid heuristic that integrates a modified coordinate search into an iterated local search. It can quickly produce high-quality solutions to this complex problem. The performance of our solution algorithms is demonstrated through a series of computational experiments.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yonggang Chang ◽  
Huizhi Ren ◽  
Shijie Wang

This paper addresses a special truck scheduling problem in the open-pit mine with different transport revenue consideration. A mixed integer programming model is formulated to define the problem clearly and a few valid inequalities are deduced to strengthen the model. Some properties and two upper bounds of the problem are proposed. Based on these inequalities, properties, and upper bounds, a heuristic solution approach with two improvement strategies is proposed to resolve the problem and the numerical experiment demonstrates that the proposed solution approach is effective and efficient.


2019 ◽  
Vol 53 (5) ◽  
pp. 1271-1286
Author(s):  
Veronica Dal Sasso ◽  
Luigi De Giovanni ◽  
Martine Labbé

The delay management problem arises in public transportation networks, often characterized by the necessity of connections between different vehicles. The attractiveness of public transportation networks is strongly related to the reliability of connections, which can be missed when delays or other unpredictable events occur. Given a single initial delay at one node of the network, the delay management problem is to determine which vehicles have to wait for the delayed ones, with the aim of minimizing the dissatisfaction of the passengers. In this paper, we present strengthened mixed integer linear programming formulations and new families of valid inequalities. The implementation of branch-and-cut methods and tests on a benchmark of instances taken from real networks show the potential of the proposed formulations and cuts.


Sign in / Sign up

Export Citation Format

Share Document