Equilibrium reinsurance-investment strategy with a common shock under two kinds of premium principles
This paper investigates the optimal mean-variance reinsurance-investment problem for an insurer with a common shock dependence under two kinds of popular premium principles: the variance premium principle and the expected value premium principle. We formulate the optimization problem within a game theoretic framework and derive the closed-form expressions of the equilibrium reinsurance-investment strategy and equilibrium value function under the two different premium principles by solving the extended Hamilton-Jacobi-Bellman system of equations. We find that under the variance premium principle, the proportional reinsurance is the optimal reinsurance strategy for the optimal reinsurance-investment problem with a common shock, while under the expected value premium principle, the excess-of-loss reinsurance is the optimal reinsurance strategy. In addition, we illustrate the equilibrium reinsurance-investment strategy by numerical examples and discuss the impacts of model parameters on the equilibrium strategy.