scholarly journals Estimating the solar wind pressure at comet 67P from Rosetta magnetic field measurements

2019 ◽  
Vol 9 ◽  
pp. A3 ◽  
Author(s):  
Aniko Timar ◽  
Zoltan Nemeth ◽  
Karoly Szego ◽  
Melinda Dósa ◽  
Andrea Opitz ◽  
...  

Aims: The solar wind pressure is an important parameter of space weather, which plays a crucial role in the interaction of the solar wind with the planetary plasma environment. Here we investigate the possibility of determining a solar wind pressure proxy from Rosetta magnetic field data, measured deep inside the induced magnetosphere of comet 67P/Churyumov-Gerasimenko. This pressure proxy would be useful not only for other Rosetta related studies but could also serve as a new, independent input database for space weather propagation to other locations in the Solar System. Method: For the induced magnetospheres of comets the magnetic pressure in the innermost part of the pile-up region is balanced by the solar wind dynamic pressure. Recent investigations of Rosetta data have revealed that the maximum magnetic field in the pile-up region can be approximated by magnetic field measurements performed in the inner regions of the cometary magnetosphere, close to the boundary of the diamagnetic cavity, from which the external solar wind pressure can be estimated. Results: We were able to determine a solar wind pressure proxy for the time interval when the Rosetta spacecraft was located near the diamagnetic cavity boundary, between late April 2015 and January 2016. We then compared our Rosetta pressure proxy to solar wind pressure extrapolated to comet 67P from near-Earth. After the exclusion of disturbances caused by transient events, we found a strong correlation between the two datasets.

2009 ◽  
Vol 27 (6) ◽  
pp. 2457-2474 ◽  
Author(s):  
C. Forsyth ◽  
M. Lester ◽  
R. C. Fear ◽  
E. Lucek ◽  
I. Dandouras ◽  
...  

Abstract. Following a solar wind pressure pulse on 3 August 2001, GOES 8, GOES 10, Cluster and Polar observed dipolarizations of the magnetic field, accompanied by an eastward expansion of the aurora observed by IMAGE, indicating the occurrence of two substorms. Prior to the first substorm, the motion of the plasma sheet with respect to Cluster was in the ZGSM direction. Observations following the substorms show the occurrence of current sheet waves moving predominantly in the −YGSM direction. Following the second substorm, the current sheet waves caused multiple current sheet crossings of the Cluster spacecraft, previously studied by Zhang et al. (2002). We further this study to show that the velocity of the current sheet waves was similar to the expansion velocity of the substorm aurora and the expansion of the dipolarization regions in the magnetotail. Furthermore, we compare these results with the current sheet wave models of Golovchanskaya and Maltsev (2005) and Erkaev et al. (2008). We find that the Erkaev et al. (2008) model gives the best fit to the observations.


1971 ◽  
Vol 2 ◽  
pp. 173-188
Author(s):  
C. P. Sonett ◽  
P. Dyal ◽  
D. S. Colburn ◽  
B. F. Smith ◽  
G. Schubert ◽  
...  

AbstractIt is shown that the Moon possesses an extraordinary response to induction from the solar wind due to a combination of a high interior electrical conductivity together with a relatively resistive crustal layer into which the solar wind dynamic pressure forces back the induced field. The dark side response, devoid of solar wind pressure, is approximately that expected for the vacuum case. These data permit an assessment of the interior conductivity and an estimate of the thermal gradient in the crustal region. The discovery of a large permanent magnetic field at the Apollo 12 site corresponds approximately to the paleomagnetic residues discovered in both Apollo 11 and 12 rock samples The implications regarding an early lunar magnetic field are discussed and it is shown that among the various conjectures regarding the early field the most prominent are either an interior dynamo or an early approach to the Earth though no extant model is free of difficulties.


2018 ◽  
Vol 613 ◽  
pp. A57 ◽  
Author(s):  
L. Berčič ◽  
E. Behar ◽  
H. Nilsson ◽  
G. Nicolaou ◽  
G. Stenberg Wieser ◽  
...  

Aims. Cometary ions are constantly produced in the coma, and once produced they are accelerated and eventually escape the coma. We describe and interpret the dynamics of the cometary ion flow, of an intermediate active comet, very close to the nucleus and in the terminator plane. Methods. We analysed in situ ion and magnetic field measurements, and characterise the velocity distribution functions (mostly using plasma moments). We propose a statistical approach over a period of one month. Results. On average, two populations were observed, separated in phase space. The motion of the first is governed by its interaction with the solar wind farther upstream, while the second one is accelerated in the inner coma and displays characteristics compatible with an ambipolar electric field. Both populations display a consistent anti-sunward velocity component. Conclusions. Cometary ions born in different regions of the coma are seen close to the nucleus of comet 67P/Churyumov–Gerasimenko with distinct motions governed in one case by the solar wind electric field and in the other case by the position relative to the nucleus. A consistent anti-sunward component is observed for all cometary ions. An asymmetry is found in the average cometary ion density in a solar wind electric field reference frame, with higher density in the negative (south) electric field hemisphere. There is no corresponding signature in the average magnetic field strength.


Solar Physics ◽  
1969 ◽  
Vol 6 (3) ◽  
pp. 456-464 ◽  
Author(s):  
George L. Siscoe ◽  
James M. Turner ◽  
Alan J. Lazarus

2019 ◽  
Vol 8 (2) ◽  
pp. 285-291 ◽  
Author(s):  
Ferdinand Plaschke

Abstract. Accurate magnetic field measurements by fluxgate magnetometers onboard spacecraft require ground and regular in-flight calibration activities. Therewith, the parameters of a coupling matrix and an offset vector are adjusted; they are needed to transform raw magnetometer outputs into calibrated magnetic field measurements. The components of the offset vector are typically determined by analyzing Alfvénic fluctuations in the solar wind if solar wind measurements are available. These are characterized by changes in the field components, while the magnetic field modulus stays constant. In this paper, the following question is answered: how many solar wind data are sufficient for accurate fluxgate magnetometer offset determinations? It is found that approximately 40 h of solar wind data are sufficient to achieve offset accuracies of 0.2 nT, and about 20 h suffice for accuracies of 0.3 nT or better if the magnetometer offsets do not drift within these time intervals and if the spacecraft fields do not vary at the sensor position. Offset determinations with uncertainties lower than 0.1 nT, however, would require at least hundreds of hours of solar wind data.


2009 ◽  
Vol 27 (12) ◽  
pp. 4533-4545 ◽  
Author(s):  
N. J. T. Edberg ◽  
U. Auster ◽  
S. Barabash ◽  
A. Bößwetter ◽  
D. A. Brain ◽  
...  

Abstract. We report on new simultaneous in-situ observations at Mars from Rosetta and Mars Express (MEX) on how the Martian plasma environment is affected by high pressure solar wind. A significant sharp increase in solar wind density, magnetic field strength and turbulence followed by a gradual increase in solar wind velocity is observed during ~24 h in the combined data set from both spacecraft after Rosetta's closest approach to Mars on 25 February 2007. The bow shock and magnetic pileup boundary are coincidently observed by MEX to become asymmetric in their shapes. The fortunate orbit of MEX at this time allows a study of the inbound boundary crossings on one side of the planet and the outbound crossings on almost the opposite side, both very close to the terminator plane. The solar wind and interplanetary magnetic field (IMF) downstream of Mars are monitored through simultaneous measurements provided by Rosetta. Possible explanations for the asymmetries are discussed, such as crustal magnetic fields and IMF direction. In the same interval, during the high solar wind pressure pulse, MEX observations show an increased amount of escaping planetary ions from the polar region of Mars. We link the high pressure solar wind with the observed simultaneous ion outflow and discuss how the pressure pulse could also be associated with the observed boundary shape asymmetry.


1986 ◽  
Vol 91 (A2) ◽  
pp. 1261 ◽  
Author(s):  
H. Lühr ◽  
D. J. Southwood ◽  
N. Klöcker ◽  
M. Acuña ◽  
B. Häusler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document