scholarly journals Supercompensation in Elite Water Polo: Heart Rate Variability and Perceived Recovery

2021 ◽  
Vol 5 (02) ◽  
pp. E53-E58
Author(s):  
Petros G. Botonis ◽  
Ilias Smilios ◽  
Argyris G. Toubekis

AbstractWe examined the association of heart rate variability assessed with the logarithm of the root mean square of successive differences (LnRMSSD) and perceived recovery status of nine elite water polo players with the fluctuations of the internal training load (ITL). ITL, post-wakening LnRMSSD, and measures of perceived recovery were obtained across one regeneration week, during two mesocycles of intensified preseason training (PR1, PR2) and during two mesocycles of in-season training (IN1, IN2). ITL at PR1 and PR2 was increased by 60–70% compared to regeneration week (p<0.01) and was reduced by 30% at IN1 and IN2 compared to PR1 and PR2 (p<0.01). Weekly averaged LnRMSSD (LnRMSSDmean) was higher in IN2 compared to regeneration week and PR2 (p<0.01 and p<0.05, respectively). Perceived recovery was higher at IN1 and IN2 compared to PR2 (p=0.01 and p<0.001, respectively). ITL correlated with LnRMSSD in the preseason (r=–0.26, p=0.03). Nonetheless, similar association was not apparent during the in-season period (r=0.02, p=0.88). Cardiac autonomic perturbations may not occur when an increment of internal training load is less than 60–70%. However, the reduction of training load in season by 30% improves both LnRMSSDmean and perceived recovery status, implying that training periodization may lead players in supercompensation.

Animals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1867
Author(s):  
Michele Panzera ◽  
Daniela Alberghina ◽  
Alessandra Statelli

Background: Few studies have been performed to identify objective indicators for the selection of therapeutic donkeys or to assess their welfare during animal-assisted interventions (AAIs) Objective: This study aimed to evaluate the response to the ethological test and the modifications of physiological parameters in donkeys subjected to AAI sessions. Methods: Thirteen donkeys were subjected to a behavioral evaluation during an AAI session. Heart rate, heart rate variability, and root mean square of successive difference values were detected. Results: Statistically significant changes in the tested parameters were observed during AAI sessions. Conclusions: In donkeys, there was a neurovegetative involvement during AAI sessions. Our data give a contribution to the evaluation of donkey welfare during AAIs.


Hypertension ◽  
2020 ◽  
Vol 76 (4) ◽  
pp. 1256-1262
Author(s):  
Balewgizie S. Tegegne ◽  
Tengfei Man ◽  
Arie M. van Roon ◽  
Nigus G. Asefa ◽  
Harriëtte Riese ◽  
...  

Dysregulation of the cardiac autonomic nervous system, as indexed by reduced heart rate variability (HRV), has been associated with the development of high blood pressure (BP). However, the underlying pathological mechanisms are not yet fully understood. This study aimed to estimate heritability of HRV and BP and to determine their genetic overlap. We used baseline data of the 3-generation Lifelines population-based cohort study (n=149 067; mean age, 44.5). In-house software was used to calculate root mean square of successive differences and SD of normal-to-normal intervals as indices of HRV based on 10-second resting ECGs. BP was recorded with an automatic BP monitor. We estimated heritabilities and genetic correlations with variance components methods in ASReml software. We additionally estimated genetic correlations with bivariate linkage disequilibrium score regression using publicly available genome-wide association study data. The heritability (SE) estimates were 15.6% (0.90%) for SD of normal-to-normal intervals and 17.9% (0.90%) for root mean square of successive differences. For BP measures, they ranged from 24.4% (0.90%) for pulse pressure to 30.3% (0.90%) for diastolic BP. Significant negative genetic correlations (all P <0.0001) of root mean square of successive differences/SD of normal-to-normal intervals with systolic BP (−0.20/−0.16) and with diastolic BP (−0.15/−0.13) were observed. LD score regression showed largely consistent genetic correlation estimates of root mean square of successive differences/SD of normal-to-normal intervals with systolic BP (range, −0.08 to −0.23) and diastolic BP (range, −0.20 to −0.27). Our study shows a substantial contribution of genetic factors in explaining the variance of HRV and BP measures in the general population. The significant negative genetic correlations between HRV and BP indicate that genetic pathways for HRV and BP partially overlap.


Stroke ◽  
2021 ◽  
Author(s):  
Galit Weinstein ◽  
Kendra Davis-Plourde ◽  
Alexa S. Beiser ◽  
Sudha Seshadri

Background and Purpose: The autonomic nervous system has been implicated in stroke and dementia pathophysiology. High resting heart rate and low heart rate variability indicate the effect of autonomic imbalance on the heart. We examined the associations of resting heart rate and heart rate variability with incident stroke and dementia in a community-based cohort of middle- and old-aged adults. Methods: The study sample included 1581 participants aged >60 years and 3271 participants aged >45 years evaluated for incident dementia and stroke, respectively, who participated in the Framingham Offspring cohort third (1983–1987) examination and had follow-up for neurology events after the seventh (1998–2001) examination. Heart rate variability was assessed through the standard deviation (SD) of normal-to-normal RR intervals and the root mean square of successive differences between normal heartbeats from 2-hour Holter monitor. Participants were followed-up for stroke and dementia incidence from exam 7 to a maximum of 10 years. Cox regression models were used to assess the link of resting heart rate and heart rate variability with stroke and dementia risk while adjusting for potential confounders, and interactions with age and sex were assessed. Results: Of the dementia (mean age, 55±6 years, 46% men) and stroke (mean age, 48±9 years, 46% men) samples, 133 and 127 developed dementia and stroke, respectively, during the follow-up. Overall, autonomic imbalance was not associated with dementia risk. However, age modified the associations such that SD of normal-to-normal intervals and root mean square of successive differences were associated with dementia risk in older people (hazard ratio [HR] [95% CI] per 1SD, 0.61 [0.38–0.99] and HR [95% CI] per 1SD, 0.34 [0.15–0.74], respectively). High resting heart rate was associated with increased stroke risk (HR [95% CI] per 10 bpm, 1.18 [1.01–1.39]), and high SD of normal-to-normal intervals was associated with lower stroke risk in men (HR [95% CI] per 1SD, 0.46 [0.26–0.79]) but not women (HR [95% CI] per 1SD, 1.25 [0.88–1.79]; P for interaction=0.003). Conclusions: Some measures of cardiac autonomic imbalance may precede dementia and stroke occurrence, particularly in older ages and men, respectively.


Author(s):  
Allyssa K. Memmini ◽  
Michael F. La Fountaine ◽  
Steven P. Broglio ◽  
Robert D. Moore

Context Concussion may negatively influence cardiovascular function and the autonomic nervous system, defined by alteration in heart rate variability (HRV). Differences in HRV most commonly emerge during a physical challenge, such as the final steps of the return-to-sport progression. Objective To assess the effect of concussion history on aspects of cardio-autonomic function during recovery from a bout of submaximal exercise in adolescent male hockey athletes. Design Case-control study. Setting Research laboratory. Patients or Other Participants Thirty-three male athletes participating in Midget-AAA hockey were divided into those with (n = 15; age = 16 ± 1 years, height = 1.78 ± 0.06 m, mass = 73.9 ± 7.4 kg, 10.5 ± 1.6 years of sport experience, 25.2 ± 18.3 months since last injury) or without (n = 18; age = 16 ± 1 years, height = 1.78 ± 0.05 m, mass = 74.8 ± 7.6 kg, 10.6 ± 1.9 years of sport experience) a concussion history. Those with a concussion history were binned on total count: concussion) or 2 or more concussions. Intervention(s) All athletes underwent 5 minutes of resting HRV assessment, followed by 20 minutes of aerobic exercise at 60% to 70% of their maximal target heart rate and a 9-minute, postexercise HRV assessment. Main Outcome Measure(s) Heart rate variability measures of mean NN interval, root mean square of successive differences, and standard deviation of NN interval (SDNN). Results Group demographic characteristics were not different. When the control and concussed groups were compared, group and time main effects for heart rate recovery, root mean square of successive differences, and SDNN (P values &lt; .01), and an interaction effect for SDNN (P &lt; .05) were demonstrated. Recovery trends for each group indicated that a history of 2 or more concussions may negatively affect cardio-autonomic recovery postexercise. Conclusions Our findings suggest that those with more than 1 previous concussion may be associated with a greater risk for long-term dysautonomia. Future use of HRV may provide clinicians with objective guidelines for concussion-management and safe return-to-participation protocols.


2013 ◽  
Vol 39 (1) ◽  
pp. 85-92 ◽  
Author(s):  
Andrew A. Flatt ◽  
Michael R. Esco

Abstract The purpose of this investigation was to cross-validate the ithleteTM heart rate variability smart phone application with an electrocardiograph for determining ultra-short-term root mean square of successive R-R intervals. The root mean square of successive R-R intervals was simultaneously determined via electrocardiograph and ithleteTM at rest in twenty five healthy participants. There were no significant differences between the electrocardiograph and ithleteTM derived root mean square of successive R-R interval values (p > 0.05) and the correlation was near perfect (r = 0.99, p < 0.001). In addition, the ithleteTM revealed a Standard Error of the Estimate of 1.47 and Bland Altman plot showed that the limits of agreement ranged from 2.57 below to 2.63 above the constant error of -0.03. In conclusion, the ithleteTM appeared to provide a suitably accurate measure of root mean square of successive R-R intervals when compared to the electrocardiograph measures obtained in the laboratory within the current sample of healthy adult participants. The current study lays groundwork for future research determining the efficacy of ithleteTM for reflecting athletic training status over a chronic conditioning period.


10.2196/17355 ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. e17355
Author(s):  
Emily Lam ◽  
Shahrose Aratia ◽  
Julian Wang ◽  
James Tung

Background Heart rate variability (HRV) is used to assess cardiac health and autonomic nervous system capabilities. With the growing popularity of commercially available wearable technologies, the opportunity to unobtrusively measure HRV via photoplethysmography (PPG) is an attractive alternative to electrocardiogram (ECG), which serves as the gold standard. PPG measures blood flow within the vasculature using color intensity. However, PPG does not directly measure HRV; it measures pulse rate variability (PRV). Previous studies comparing consumer-grade PRV with HRV have demonstrated mixed results in short durations of activity under controlled conditions. Further research is required to determine the efficacy of PRV to estimate HRV under free-living conditions. Objective This study aims to compare PRV estimates obtained from a consumer-grade PPG sensor with HRV measurements from a portable ECG during unsupervised free-living conditions, including sleep, and examine factors influencing estimation, including measurement conditions and simple editing methods to limit motion artifacts. Methods A total of 10 healthy adults were recruited. Data from a Microsoft Band 2 and a Shimmer3 ECG unit were recorded simultaneously using a smartphone. Participants wore the devices for >90 min during typical day-to-day activities and while sleeping. After filtering, ECG data were processed using a combination of discrete wavelet transforms and peak-finding methods to identify R-R intervals. P-P intervals were edited for deletion using methods based on outlier detection and by removing sections affected by motion artifacts. Common HRV metrics were compared, including mean N-N, SD of N-N intervals, percentage of subsequent differences >50 ms (pNN50), root mean square of successive differences, low-frequency power (LF), and high-frequency power. Validity was assessed using root mean square error (RMSE) and Pearson correlation coefficient (R2). Results Data sets for 10 days and 9 corresponding nights were acquired. The mean RMSE was 182 ms (SD 48) during the day and 158 ms (SD 67) at night. R2 ranged from 0.00 to 0.66, with 2 of 19 (2 nights) trials considered moderate, 7 of 19 (2 days, 5 nights) fair, and 10 of 19 (8 days, 2 nights) poor. Deleting sections thought to be affected by motion artifacts had a minimal impact on the accuracy of PRV measures. Significant HRV and PRV differences were found for LF during the day and R-R, SDNN, pNN50, and LF at night. For 8 of the 9 matched day and night data sets, R2 values were higher at night (P=.08). P-P intervals were less sensitive to rapid R-R interval changes. Conclusions Owing to overall poor concurrent validity and inconsistency among participant data, PRV was found to be a poor surrogate for HRV under free-living conditions. These findings suggest that free-living HRV measurements would benefit from examining alternate sensing methods, such as multiwavelength PPG and wearable ECG.


2006 ◽  
Vol 91 (3) ◽  
pp. 851-859 ◽  
Author(s):  
Maja Petrova ◽  
Raymond Townsend ◽  
Karen L. Teff

Abstract Context: Heart rate variability (HRV), an index of cardiac vagal activity, is decreased in individuals with metabolic disease. The relationship between decreased HRV and metabolic disease is unclear. Objective: The objective of this study was to determine whether experimentally induced glucose intolerance decreases HRV in a circadian relevant manner in healthy individuals. Design: This was a within-subject, randomized design study with subjects infused for 48 h with saline (50 ml/h) or 15% glucose (200 mg/m2·min). HRV was evaluated using time domain measurements taken over the 48-h period. Blood pressure and heart rate were monitored, and blood samples were taken. Setting: This study was performed at the General Clinical Research Center of the Hospital of the University of Pennsylvania. Patients: Sixteen healthy subjects (eight men and eight women; 18–30 yr old; mean body mass index, 21.7 ± 1.6 kg/m2) were studied. Results: After glucose infusion, mean plasma glucose was increased by 16.8% (P &lt; 0.0001), and plasma insulin was increased by 99.4% (P &lt; 0.0001) compared with after saline infusion. Significant decreases in homeostasis model assessment indicated a decrease in insulin sensitivity (saline, 0.52 + 0.13; glucose, 0.34 + 0.12; P &lt; 0.0001). The nocturnal root mean square successive difference, an index of cardiac vagal activity, was significantly decreased (P &lt; 0.01), and nocturnal HR (P &lt; 0.001) and blood pressure were significantly elevated (saline, 107.4 ± 2.7; glucose, 112.5 ± 3.3 mm Hg; P &lt; 0.05) compared with the saline control. The change in homeostasis model assessment due to glucose infusion was significantly correlated with the change in root mean square successive difference (r = 0.48; P &lt; 0.01). Conclusions: Prolonged mild hyperinsulinemia disrupts the circadian rhythm of cardiac autonomic activity. Early changes in the neural control of cardiac activity may provide a potential mechanism mediating the pathophysiological link between impaired glucose tolerance and cardiovascular disease.


2019 ◽  
Author(s):  
Emily Lam ◽  
Shahrose Aratia ◽  
Julian Wang ◽  
James Tung

BACKGROUND Heart rate variability (HRV) is used to assess cardiac health and autonomic nervous system capabilities. With the growing popularity of commercially available wearable technologies, the opportunity to unobtrusively measure HRV via photoplethysmography (PPG) is an attractive alternative to electrocardiogram (ECG), which serves as the gold standard. PPG measures blood flow within the vasculature using color intensity. However, PPG does not directly measure HRV; it measures pulse rate variability (PRV). Previous studies comparing consumer-grade PRV with HRV have demonstrated mixed results in short durations of activity under controlled conditions. Further research is required to determine the efficacy of PRV to estimate HRV under free-living conditions. OBJECTIVE This study aims to compare PRV estimates obtained from a consumer-grade PPG sensor with HRV measurements from a portable ECG during unsupervised free-living conditions, including sleep, and examine factors influencing estimation, including measurement conditions and simple editing methods to limit motion artifacts. METHODS A total of 10 healthy adults were recruited. Data from a Microsoft Band 2 and a Shimmer3 ECG unit were recorded simultaneously using a smartphone. Participants wore the devices for &gt;90 min during typical day-to-day activities and while sleeping. After filtering, ECG data were processed using a combination of discrete wavelet transforms and peak-finding methods to identify R-R intervals. P-P intervals were edited for deletion using methods based on outlier detection and by removing sections affected by motion artifacts. Common HRV metrics were compared, including mean N-N, SD of N-N intervals, percentage of subsequent differences &gt;50 ms (pNN50), root mean square of successive differences, low-frequency power (LF), and high-frequency power. Validity was assessed using root mean square error (RMSE) and Pearson correlation coefficient (<i>R</i><sup>2</sup>). RESULTS Data sets for 10 days and 9 corresponding nights were acquired. The mean RMSE was 182 ms (SD 48) during the day and 158 ms (SD 67) at night. <i>R</i><sup>2</sup> ranged from 0.00 to 0.66, with 2 of 19 (2 nights) trials considered moderate, 7 of 19 (2 days, 5 nights) fair, and 10 of 19 (8 days, 2 nights) poor. Deleting sections thought to be affected by motion artifacts had a minimal impact on the accuracy of PRV measures. Significant HRV and PRV differences were found for LF during the day and R-R, SDNN, pNN50, and LF at night. For 8 of the 9 matched day and night data sets, <i>R</i><sup>2</sup> values were higher at night (<i>P=</i>.08). P-P intervals were less sensitive to rapid R-R interval changes. CONCLUSIONS Owing to overall poor concurrent validity and inconsistency among participant data, PRV was found to be a poor surrogate for HRV under free-living conditions. These findings suggest that free-living HRV measurements would benefit from examining alternate sensing methods, such as multiwavelength PPG and wearable ECG.


Sports ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 164
Author(s):  
Taro Iizuka ◽  
Michihiro Kon ◽  
Taketeru Maegawa ◽  
Jun Yuda ◽  
Toru Aoyanagi ◽  
...  

The aim of this study was to clarify whether the physiological fatigue status of elite speed skaters is influenced by the approximately five-month international competition season by comparing morning heart rate variability (HRV) at the beginning of the competition season (Japan Single Distances Championships: JSDC) with that at the end of the competition season (World Single Distances Championships: WSDC). Five international-class speed skaters participated in the study. HRV indices and subjective fatigue were measured each morning of the four days prior to the first races of the JSDC and WSDC in the 2007/2008 season. The parasympathetic HRV indices: root mean square of the successive R-R interval differences (RMSSD) (JSDC, 61.0 ms; WSDC, 42.1 ms; p < 0.05), high-frequency component power (HF) (JSDC, 1393 ms2; WSDC, 443 ms2; p < 0.05), and normalized unit of HF (HFnu) (JSDC, 53.2%; WSDC, 25.5%; p < 0.05) were lower for the WSDC than for the JSDC. The decrease in these indices may reflect the skaters’ accumulated fatigue during the course of the competition season. Morning measurements of HRV may thus be an efficient way for elite speed skaters and coaches to objectively monitor physiological fatigue throughout the competition season.


Sign in / Sign up

Export Citation Format

Share Document