On the synthesis of a novel chiral phosphorodiamidic acid containing the α-phenylethyl moiety: Insights in its conformation and reactivity

Synthesis ◽  
2021 ◽  
Author(s):  
Carlos Alberto Cruz-Hernández ◽  
Eusebio Juaristi

A few years ago, the synthesis of chiral phosphoric acids supported on chiral BINOL frameworks was accomplished by T. Akiyama and M. Terada. Subsequent relevant applications demonstrated the importance of chiral phosphoric acids as privileged chiral inducers in asymmetric organocatalysis. In the present report we discuss the development of novel chiral phosphorodiamidic acids derived from C2-symmetric trans-1,2-diaminocyclohexane aliphatic frameworks. The preparation of the new chiral Brønsted acids, based on the intermediacy of a 1,3,2-diheterophospholan-2-oxide moiety, turned out to be challenging since several plausible synthetic methodologies proved to be ineffective. Furthermore, the five membered heterocyclic moiety turned out to be easily hydrolyzed when exposed to nucleophilic alcohols or water. Complementary to the successful multistep synthesis reported here, it was possible to obtain crystals of the key precursor of the desired phosphorodiamidic acid, which proved suitable for X-ray diffraction analysis and hence to establish important conformational characteristics of the novel heterocycle.

1993 ◽  
Vol 58 (12) ◽  
pp. 2924-2935 ◽  
Author(s):  
Jane H. Jones ◽  
Bohumil Štíbr ◽  
John D. Kennedy ◽  
Mark Thornton-Pett

Thermolysis of [8,8-(PMe2Ph)2-nido-8,7-PtCB9H11] in boiling toluene solution results in an elimination of the platinum centre and cluster closure to give the ten-vertex closo species [6-(PMe2Ph)-closo-1-CB9H9] in 85% yield as a colourles air stable solid. The product is characterized by NMR spectroscopy and single-crystal X-ray diffraction analysis. Crystals (from hexane-dichloromethane) are monoclinic, space group P21/c, with a = 903.20(9), b = 1 481.86(11), c = 2 320.0(2) pm, β = 97.860(7)° and Z = 8, and the structure has been refined to R(Rw) = 0.045(0.051) for 3 281 observed reflections with Fo > 2.0σ(Fo). The clean high-yield elimination of a metal centre from a polyhedral metallaborane or metallaheteroborane species is very rare.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4067
Author(s):  
Giovanni Ricci ◽  
Giuseppe Leone ◽  
Giorgia Zanchin ◽  
Benedetta Palucci ◽  
Alessandra Forni ◽  
...  

Some novel cobalt diphenylphosphine complexes were synthesized by reacting cobalt(II) chloride with (2-methoxyethyl)diphenylphosphine, (2-methoxyphenyl)diphenylphosphine, and 2-(1,1-dimethylpropyl)-6-(diphenylphosphino)pyridine. Single crystals suitable for X-ray diffraction studies were obtained for the first two complexes, and their crystal structure was determined. The novel compounds were then used in association with methylaluminoxane (MAO) for the polymerization of 1,3-butadiene, and their behavior was compared with that exhibited in the polymerization of the same monomer by the systems CoCl2(PnPrPh2)2/MAO and CoCl2(PPh3)2/MAO. Some significant differences were observed depending on the MAO/Co ratio used, and a plausible interpretation for such a different behavior is proposed.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3920
Author(s):  
Martin Weber ◽  
Gábor Balázs ◽  
Alexander V. Virovets ◽  
Eugenia Peresypkina ◽  
Manfred Scheer

By reacting [{Cp‴Fe(CO)2}2(µ,η1:1-P4)] (1) with in situ generated phosphenium ions [Ph2P][A] ([A]− = [OTf]− = [O3SCF3]−, [PF6]−), a mixture of two main products of the composition [{Cp‴Fe(CO)2}2(µ,η1:1-P5(C6H5)2)][PF6] (2a and 3a) could be identified by extensive 31P NMR spectroscopic studies at 193 K. Compound 3a was also characterized by X-ray diffraction analysis, showing the rarely observed bicyclo[2.1.0]pentaphosphapentane unit. At room temperature, the novel compound [{Cp‴Fe}(µ,η4:1-P5Ph2){Cp‴(CO)2Fe}][PF6] (4) is formed by decarbonylation. Reacting 1 with in situ generated diphenyl arsenium ions gives short-lived intermediates at 193 K which disproportionate at room temperature into tetraphenyldiarsine and [{Cp‴Fe(CO)2}4(µ4,η1:1:1:1-P8)][OTf]2 (5) containing a tetracyclo[3.3.0.02,7.03,6]octaphosphaoctane ligand.


2002 ◽  
Vol 80 (11) ◽  
pp. 1469-1480 ◽  
Author(s):  
Karena Thieme ◽  
Sara C Bourke ◽  
Juan Zheng ◽  
Mark J MacLachlan ◽  
Fojan Zamanian ◽  
...  

The novel zirconatetraferrocenylcyclotrisiloxane Cp2Zr(OSiFc2)2O (6), dizirconatetraferrocenylcyclotetrasiloxane [Cp2Zr(OSiFc2)O]2 (7), boratetraferrocenylcyclotrisiloxane (C6H5)B(OSiFc2)2O (8), and diboratetraferrocenylcyclotetrasiloxane [(C6H5)B(OSiFc2)O]2 (9) with ferrocenyl (Fc = Fe(η-C5H4)(η-C5H5)) substituents at silicon have been prepared from the reactions of Cp2Zr(NMe2)2 and PhBCl2 with diferrocenylsilanediol Fc2Si(OH)2 (3) and tetraferrocenyldisiloxanediol [Fc2SiOH]2O (5). The compounds were characterized by mass spectrometry, elemental analysis, UV–vis, IR, Raman, and multinuclear NMR spectroscopy, as well as single crystal X-ray diffraction. Thermogravimetric analysis and differential scanning calorimetry investigation of 6–9 showed that the cycles decompose before they can undergo any thermal ring-opening polymerization. In addition, no polymerization was detected in the presence of either KOSiMe3 or HOTf. The bulky ferrocenyl substituents on the Si atoms are likely to be at least partially responsible for the inability of these heterocycles to undergo ring-opening polymerization. Key words: heterocyclosiloxanes, ferrocenyl.


1979 ◽  
Vol 57 (13) ◽  
pp. 1691-1693 ◽  
Author(s):  
Jean-Claude Braekman ◽  
Claude Hootele ◽  
Noah Miller ◽  
Jean-Paul Declercq ◽  
Gabriel Germain ◽  
...  

The isolation of the novel pentacyclic base megastachine (1), representative of a new type of Lycopodium alkaloid, is reported. Its structure has been determined by X-ray diffraction analysis.


2018 ◽  
Vol 74 (8) ◽  
pp. 936-943
Author(s):  
Galina V. Kiriukhina ◽  
Olga V. Yakubovich ◽  
Ekaterina M. Kochetkova ◽  
Olga V. Dimitrova ◽  
Anatoliy S. Volkov

Caesium manganese hexahydrate phosphate, CsMn(H2O)6(PO4), was synthesized under hydrothermal conditions. Its crystal structure was determined from single-crystal X-ray diffraction data. The novel phase crystallizes in the hexagonal space group P63 mc and represents the first manganese member in the struvite morphotropic series, AM(H2O)6(TO4). Its crystal structure is built from Mn(H2O)6 octahedra and PO4 tetrahedra linked into a framework via hydrogen bonding. The large Cs atoms are encapsulated in the framework cuboctahedral cavities. It is shown that the size of the A + ionic radius within the morphotropic series AM(H2O)6(XO4) results is certain types of crystal structures and affects the values of the unit-cell parameters. Structural relationships with Na(H2O)Mg(H2O)6(PO4) and the mineral hazenite, KNa(H2O)2Mg2(H2O)12(PO4)2, are discussed.


Author(s):  
Dorota A. Kowalska ◽  
Vasyl Kinzhybalo ◽  
Yuriy I. Slyvka ◽  
Marek Wołcyrz

The novel π-coordination compound [CuI(m-dmphast)NO3], where m-dmphast = 5-(allylthio)-1-(3,5-dimethylphenyl)-1H-tetrazole, is characterized using single-crystal X-ray diffraction and crystallizes in a noncentrosymmetric space group. Additionally, for the first time in this group of materials, the streaks of X-ray diffuse scattering in the reciprocal space sections were observed and described. This gave the possibility for a deeper insight into the local structure of the title compound. The conjecture about the origin of diffuse scattering was derived from average structure solution. It was then confirmed using the local structure modelling. The extended [Cu(m-dmphast)NO3]∞ chains, connected by weak interactions, produce layers which can exist in two enantiomeric forms, one of which predominates.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Xiaowei Zhu ◽  
Kuisuo Yang ◽  
Anping Wu ◽  
He Bai ◽  
Jinrong Bao ◽  
...  

Abstract The novel submicro-spheres SiO2@LaPO4:Eu@SiO2 with core-shell-shell structures were prepared by connecting the SiO2 submicro-spheres and the rare earth ions through an organosilane HOOCC6H4N(CONH(CH2)3Si(OCH2CH3)3 (MABA-Si). The as-prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and infrared spectroscopy (IR). It is found that the intermediate shell of the submicro-spheres was composed by LaPO4:Eu nanoparticles with the size of about 4, 5–7, or 15–34 nm. A possible formation mechanism for the SiO2@LaPO4:Eu@SiO2 submicro-spheres has been proposed. The dependence of the photoluminescence intensity on the size of the LaPO4:Eu nanoparticles has been investigated. The intensity ratios of electrical dipole transition 5D0 → 7F2 to magnetic dipole transition 5D0 → 7F1 of Eu3+ ions were increased with decreasing the size of LaPO4:Eu nanoparticles. According to the Judd-Ofelt (J-O) theory, when the size of LaPO4:Eu nanoparticles was about 4, 5–7 and 15–34 nm, the calculated J-O parameter Ω2 (optical transition intensity parameter) was 2.30 × 10−20, 1.80 × 10−20 and 1.20 × 10−20, respectively. The increase of Ω2 indicates that the symmetry of Eu3+ in the LaPO4 lattice was gradually reduced. The photoluminescence intensity of the SiO2@LaPO4:Eu@SiO2 submicro-spheres was unquenched in aqueous solution even after 15 days.


2012 ◽  
Vol 465 ◽  
pp. 76-79 ◽  
Author(s):  
Shuang Zhan ◽  
Xia Li

The novel Y2O3 nanoflowers were synthesized through a facile hydrothermal method without using any catalyst or template. The phase composition and the microstructure of as-prepared products were characterized by field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD) as well as Fourier transform infrared spectrum. The formation mechanism for the Y2O3 flowers has been proposed.


Sign in / Sign up

Export Citation Format

Share Document