Coordinate regulation of the human UDP-glucuronosyltransferase 1A10 gene by aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (Nrf2)

2009 ◽  
Vol 47 (01) ◽  
Author(s):  
S Kalthoff ◽  
U Ehmer ◽  
N Freiberg ◽  
MP Manns ◽  
CP Strassburg
Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1189
Author(s):  
Jangsoon Kim ◽  
See-Hyoung Park ◽  
Seyoung Yang ◽  
Sae Woong Oh ◽  
Kitae Kwon ◽  
...  

Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon formed during the incomplete combustion of organic matter, has harmful effects. Therefore, much research is ongoing to develop agents that can mitigate the effects of B[a]P. The aim of this study was to examine the effect of maclurin, one component of the branches of Morus alba L., on the B[a]P-induced effects in HaCaT cells, a human keratinocyte cell line. Maclurin treatment inhibited aryl hydrocarbon receptor (AHR) signaling as evidenced by reduced xenobiotic response element (XRE) reporter activity, decreased expression of cytochrome P450 1A1 (CYP1A1), and reduced nuclear translocation of AHR. The B[a]P-induced dissociation of AHR from AHR-interacting protein (AIP) was suppressed by maclurin. Maclurin also inhibited the production of intracellular reactive oxygen species (ROS) induced by B[a]P. In addition, the antioxidant property of maclurin itself was demonstrated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Furthermore, maclurin activated antioxidant response element (ARE) signaling through enhancement of ARE luciferase reporter activity and the expression of ARE-dependent genes including nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1). Nrf2 activation and its nuclear translocation were promoted by maclurin through p38 MAPK activation. These data indicate that maclurin had antagonistic activity against B[a]P effects through activation of Nrf2-mediated signaling and inhibition of AHR signaling and, suggesting its potential in protecting from harmful B[a]P-containing pollutants.


2004 ◽  
Vol 377 (1) ◽  
pp. 205-213 ◽  
Author(s):  
Qiang MA ◽  
Krista KINNEER ◽  
Yongyi BI ◽  
Jefferson Y. CHAN ◽  
Yuet Wai KAN

TCDD (2,3,7,8-tetrachlorodibenzo-p-dixoin) induces phase II drug-metabolizing enzyme NQO1 [NAD(P)H:quinone oxidoreductase; EC 1.6.99.2; DT-diaphorase] in a wide range of mammalian tissues and cells. Here, we analysed the molecular pathway mediating NQO1 induction by TCDD in mouse hepatoma cells. Inhibition of protein synthesis with CHX (cycloheximide) completely blocks induction of NQO1 by TCDD as well as the basal expression and induction by phenolic antioxidant tBHQ (2-t-butylbenzene-1,4-diol), implicating a labile factor in NQO1 mRNA expression. The inhibition is both time- and concentration-dependent, requires inhibition of protein synthesis, and occurs at a transcriptional level. Inhibition of NQO1 transcription by CHX correlates with a rapid reduction of the CNC bZip (cap ‘n’ collar basic leucine zipper) transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) through the 26 S proteasome pathway. Moreover, blocking Nrf2 degradation with proteasome inhibitor MG132 increases the amount of Nrf2 and superinduces NQO1 in the presence of TCDD or tBHQ. Finally, genetic experiments using AhR (aryl hydrocarbon receptor)-, Arnt (aryl hydrocarbon receptor nuclear translocator)- or Nrf2-deficient cells reveal that, while induction of NQO1 by TCDD depends on the presence of AhR and Arnt, the basal and inducible expression of NQO1 by either TCDD or tBHQ requires functional Nrf2. The findings demonstrate a novel role of Nrf2 in the induction of NQO1 by TCDD and provide new insights into the mechanism by which Nrf2 regulates the induction of phase II enzymes by both phenolic antioxidants and AhR ligands.


Sign in / Sign up

Export Citation Format

Share Document