Korrelation zwischen Late Gadolinium-Enhancement (LGE) und Myokardbiopsie

Author(s):  
H Korkusuz ◽  
S Lindemayr ◽  
MJ Kerl ◽  
T Vogl
2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Angel T. Chan ◽  
William Dinsfriend ◽  
Jiwon Kim ◽  
Brian Yum ◽  
Razia Sultana ◽  
...  

Abstract Background Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is widely used to identify cardiac neoplasms, for which diagnosis is predicated on enhancement stemming from lesion vascularity: Impact of contrast-enhancement pattern on clinical outcomes is unknown. The objective of this study was to determine whether cardiac metastasis (CMET) enhancement pattern on LGE-CMR impacts prognosis, with focus on heterogeneous lesion enhancement as a marker of tumor avascularity. Methods Advanced (stage IV) systemic cancer patients with and without CMET matched (1:1) by cancer etiology underwent a standardized CMR protocol. CMET was identified via established LGE-CMR criteria based on lesion enhancement; enhancement pattern was further classified as heterogeneous (enhancing and non-enhancing components) or diffuse and assessed via quantitative (contrast-to-noise ratio (CNR); signal-to-noise ratio (SNR)) analyses. Embolic events and mortality were tested in relation to lesion location and contrast-enhancement pattern. Results 224 patients were studied, including 112 patients with CMET and unaffected (CMET -) controls matched for systemic cancer etiology/stage. CMET enhancement pattern varied (53% heterogeneous, 47% diffuse). Quantitative analyses were consistent with lesion classification; CNR was higher and SNR lower in heterogeneously enhancing CMET (p < 0.001)—paralleled by larger size based on linear dimensions (p < 0.05). Contrast-enhancement pattern did not vary based on lesion location (p = NS). Embolic events were similar between patients with diffuse and heterogeneous lesions (p = NS) but varied by location: Patients with right-sided lesions had threefold more pulmonary emboli (20% vs. 6%, p = 0.02); those with left-sided lesions had lower rates equivalent to controls (4% vs. 5%, p = 1.00). Mortality was higher among patients with CMET (hazard ratio [HR] = 1.64 [CI 1.17–2.29], p = 0.004) compared to controls, but varied by contrast-enhancement pattern: Diffusely enhancing CMET had equivalent mortality to controls (p = 0.21) whereas prognosis was worse with heterogeneous CMET (p = 0.005) and more strongly predicted by heterogeneous enhancement (HR = 1.97 [CI 1.23–3.15], p = 0.005) than lesion size (HR = 1.11 per 10 cm [CI 0.53–2.33], p = 0.79). Conclusions Contrast-enhancement pattern and location of CMET on CMR impacts prognosis. Embolic events vary by CMET location, with likelihood of PE greatest with right-sided lesions. Heterogeneous enhancement—a marker of tumor avascularity on LGE-CMR—is a novel marker of increased mortality risk.


2020 ◽  
pp. 1-3
Author(s):  
Simona Boroni Grazioli ◽  
Marc-Philip Hitz ◽  
Inga Voges

Abstract A 17-year-old boy with a history of dyspnea attacks and chest pain was referred to our paediatric cardiology department. Electrocardiogram at presentation showed T-wave inversion in the inferior leads. Cardiovascular magnetic resonance imaging revealed the rare diagnosis of apical hypertrophic cardiomyopathy with subendocardial late gadolinium enhancement, missed by echocardiography.


2021 ◽  
Vol 146 (07) ◽  
pp. 461-465
Author(s):  
Julia M. Vietheer ◽  
Christian W. Hamm ◽  
Andreas Rolf

Quantifizierung der links- und rechtsventrikulären Funktion Strain Imaging erweitert die klassische Volumetrie der MRT um einen sehr subtilen globalen und regionalen Funktionsparameter. Strain detektiert sehr frühe Funktionseinbußen beider Ventrikel, die visuell noch nicht erkennbar sind. Insbesondere der longitudinale Strain ist bei ischämischen und nichtischämischen Erkrankungen frühzeitig reduziert. Strain hat über die EF hinaus zusätzliche prognostische Bedeutung. Gewebecharakterisierung T1- und T2-Mapping erweitern die klassische Gewebecharakterisierung mit Late Gadolinium Enhancement (LGE) um sehr subtile quantitative Parameter, die diffuse Fibrose (T1) und Ödem (T1 und T2) widerspiegeln. Ischämiediagnostik Die Perfusions-MRT unter Vasodilatatorstress ist das genaueste Verfahren zur Ischämiediagnostik. Die MR-INFORM-Studie zeigt, dass mithilfe der Stress-MRT fast die Hälfte der Katheteruntersuchungen in einem Kollektiv mit hoher Prätestwahrscheinlichkeit vermieden werden kann. Dabei ist die Stress-MRT der FFR-basierten Strategie nicht unterlegen und genauso sicher.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Shingo Ota ◽  
Makoto Orii ◽  
Tsuyoshi Nishiguchi ◽  
Mao Yokoyama ◽  
Ryoko Matsushita ◽  
...  

Abstract Background Non-ischemic cardiomyopathy (NICM) is a heterogeneous disease, and its prognosis varies. Although late gadolinium enhancement (LGE)-cardiovascular magnetic resonance (CMR) demonstrates a linear pattern in the mid-wall of the septum or multiple LGE lesions in patients with NICM, the therapeutic response and prognosis of multiple LGE lesions have not been elucidated. This study aimed to investigate the frequency of left ventricular (LV) reverse remodeling (LVRR) and prognosis in patients with NICM who have multiple LGE lesions. Methods This single-center retrospective study included 101 consecutive patients with NICM who were divided into 3 groups according to LGE-CMR results: patients without LGE (no LGE group = 48 patients), patients with a typical mid-wall LGE pattern (n = 29 patients), and patients with multiple LGE lesions (n = 24 patients). LVRR was defined as an increase in LV ejection fraction (LVEF) ≥ 10 % and a final value of LVEF > 35 %, which was accompanied by a decrease in LV end-systolic volume ≥ 15 % at 12-month follow-up using echocardiography. The frequency of composite cardiac events, defined as sudden cardiac death (SCD), aborted SCD (non-fatal ventricular fibrillation, sustained ventricular tachycardia, or adequate implantable cardioverter-defibrillator therapies), and heart failure death or hospitalization for worsening heart failure, were summarized and compared between the groups. Results Among the 3 groups, the frequency of LVRR was significantly lower in the multiple lesions group than in the no LGE and mid-wall groups (no LGE vs. mid-wall vs. multiple lesions: 49 % vs. 52 % vs. 19 %, p = 0.03). There were 24 composite cardiac events among the patients: 2 in patients without LGE (hospitalization for worsening heart failure; 2), 7 in patients of the mid-wall group (SCD; 1, aborted SCD; 1 and hospitalization for worsening heart failure; 5), and 15 in patients of the multiple lesions group (SCD; 1, aborted SCD; 8 and hospitalization for worsening heart failure; 6). The multiple LGE lesions was an independent predictor of composite cardiac events (hazard ratio: 11.40 [95 % confidence intervals: 1.49−92.01], p = 0.020). Conclusions Patients with multiple LGE lesions have a higher risk of cardiac events and poorer LVRR. The LGE pattern may be useful for an improved risk stratification in patients with NICM.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 699.1-699
Author(s):  
A. Gil-Vila ◽  
G. Burcet ◽  
A. Anton-Vicente ◽  
D. Gonzalez-Sans ◽  
A. Nuñez-Conde ◽  
...  

Background:Antisynthetase syndrome (ASS) is characterized by inflammatory myopathy, interstitial lung disease, arthritis, mechanical hands and Raynaud phenomenon, among other features. Recent studies have shown that idiopathic inflammatory myopathies (IIM) may develop cardiac involvement, either ischemic (coronary artery disease) or inflammatory (myocarditis). We wonder if characteristic lung interstitial involvement (interstitial lung disease) that appears in patients with the ASS may also affect the myocardial interstitial tissue. New magnetic resonance mapping techniques could detect subclinical myocardial involvement, mainly as edema (increase extracellular volume in interstitium and extracellular matrix), even in the absence of visible late Gadolinium enhancement (LGE).Objectives:Our aim was to describe the presence of interstitial myocarditis in a group of patients with ASS.Methods:Cross-sectional, observational study performed in a tertiary care center. We included 13 patients diagnosed with ASS (7 male, 53%, mean (SD) age at diagnosis 56,8 years (±11,8)). The patients were consecutively selected from our outpatient myositis clinic. Myositis specific and associated antibodies were performed by means of line immunoblot (EUROIMMUN©). Cardiac magnetic resonance (CMR) was performed on all patients. The study protocol includes functional cine magnetic resonance and standard late gadolinium enhancement (LGE), as well as novel parametric T1 and T2 mapping sequences (modified look locker inversion recovery sequences - MOLLI) with extracellular volume (ECV) calculation 20 minutes after the injection of a gadolinium-based contrast material.Results:CMR could not be performed in one patient due to anxiety. All patients studied (12) had a normal biventricular function, without alteration of segmental contraction. A third (4 out of 12, 33%) of the studied patients showed elevated T2 myocardial values without focal LGE, half of them (2/4) with an elevated ECV, consistent with myocardial edema. Two patients with normal T2 values showed unspecific LGE focal patterns, one in the right ventricle union points and another with mild interventricular septum enhancement (Figure 1). None of the patients studied refer any cardiac symptomatology. All the four patients with T2 mapping alterations (100%) had interstitial lung involvement, but only 4 out of 8 (50%) of the rest ASS patients without T2 mapping positivity. The autoimmune profile was as follows: 10 anti-Jo1/Ro52, 1 anti-EJ/Ro52, 2 anti-PL12.Conclusion:Myocarditis, although subclinical, appears to be a feature in ASS patients. T1 and T2 mapping sequences might be valuable to detect and monitor subclinical cardiac involvement in these patients. The possibility that the same etiopathogenic mechanism may be involved in the interstitial tissue in lung and myocardium is raised. More studies must be done in order to assert the prevalence of myocarditis in ASS.References:[1]Dieval C et al. Myocarditis in Patients With Antisynthetase Syndrome: Prevalence, Presentation, and Outcomes. Medicine (Baltimore). 2015 Jul;94(26):e798.[2]Myhr KA, Pecini R. Management of Myocarditis in Myositis: Diagnosis and Treatment. Curr Rheumatol Rep. 2020 Jul 22; 22:49.[3]Sharma K, Orbai AM, Desai D, Cingolani OH, Halushka MK, Christopher-Stine L, Mammen AL, Wu KC, Zakaria S. Brief report: antisynthetase syndrome-associated myocarditis. J Card Fail. 2014 Dec;20(12):939-45.Figure 1.Cardiac magnetic resonance images from ASS patients.Disclosure of Interests:None declared


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
H Maqsood ◽  
H.A Shakeel ◽  
H.F Shoukat ◽  
M.D Khan ◽  
S.A.Y Shah ◽  
...  

Abstract Introduction Hypertrophic cardiomyopathy (HCM) is characterized by left ventricular (LV) hypertrophy in the absence of pressure overload. Manifestations of the disease include heart failure associated with diastolic dysfunction and atrial and ventricular tachyarrhythmias. Pathological features of HCM include myocyte hypertrophy, interstitial fibrosis, and myocyte disarray and are mediated by angiotensin II. Purpose This study aimed to evaluate the effects of candesartan on left ventricular (LV) hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy (HCM). Methods In double-blind fashion, 30 patients (6 women, 24 men; age: 55±11 years) with HCM were randomly assigned to receive placebo (n=13) or candesartan 50 mg twice a day (n=17) for 1 year. To measure LV mass and extent of fibrosis, cardiac magnetic resonance imaging was performed at baseline and 1 year as assessed by late gadolinium enhancement. Results There was a trend toward a significant difference in the percent change in LV mass (median: +5% with placebo vs. −5% with candesartan; p=0.06). There was a significant difference in the percent change in the extent of late gadolinium enhancement, with the placebo group experiencing a larger increase (+30±27% with placebo vs. −22±44% with candesartan; p=0.03). Conclusion Our study concludes reduction of the progression of myocardial hypertrophy and fibrosis with candesartan in patients with hypertrophic cardiomyopathy. Our study population was limited so we warrant larger trials to confirm a place for angiotensin receptor blockers in the management of patients with hypertrophic cardiomyopathy. Figure 1 Funding Acknowledgement Type of funding source: Other. Main funding source(s): Self funding


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Annemie Stege Bojer ◽  
Martin Heyn Sørensen ◽  
Niels Vejlstrup ◽  
Jens P. Goetze ◽  
Peter Gæde ◽  
...  

Abstract Background Cardiovascular magnetic resonance imaging (CMR) have described localised non-ischemic late gadolinium enhancement (LGE) lesions of prognostic importance in various non-ischemic cardiomyopathies. Ischemic LGE lesions are prevalent in diabetes (DM), but non-ischemic LGE lesions have not previously been described or systematically studied in DM. Methods 296 patients with type 2 DM (T2DM) and 25 sex-matched control subjects underwent echocardiography and CMR including adenosine-stress perfusion, T1-mapping and LGE. Results 264 patients and all control subjects completed the CMR protocol. 78.4% of patients with T2DM had no LGE lesions; 11.0% had ischemic LGE lesions only; 9.5% had non-ischemic LGE lesions only; and 1.1% had both one ischemic and one non-ischemic lesion. The non-ischemic LGE lesions were situated mid-myocardial in the basal lateral or the basal inferolateral part of the left ventricle and the affected segments showed normal to high wall thickness and normal contraction. Patients with non-ischemic LGE lesions in comparison with patients without LGE lesions had increased myocardial mass (150 ± 34 vs. 133 ± 33 g, P = 0.02), average E/e’(9.9 IQR8.7–12.6 vs. 8.8 IQR7.4–10.7, P = 0.04), left atrial maximal volume (102 IQR84.6–115.2 vs. 91 IQR75.2–100.0 mL, P = 0.049), NT-proBNP (8.9 IQR5.9–19.7 vs. 5.9 IQR5.9–10.1 µmol/L, P = 0.02) and high-sensitive troponin (15.6 IQR13.0–26.1 vs. 13.0 IQR13.0–14.6 ng/L, P = 0.007) and a higher prevalence of retinopathy (48 vs. 25%, P = 0.009) and autonomic neuropathy (52 vs. 30.5%, P = 0.005). Conclusion A specific LGE pattern with lesions in the basal lateral or the basal inferolateral part of the left ventricle was found in patients with type 2 diabetes. Trial registrationhttps://www.clinicaltrials.gov. Unique identifier: NCT02684331.


2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
R Franks ◽  
R Holtackers ◽  
M Nazir ◽  
S Plein ◽  
A Chiribiri

Abstract Funding Acknowledgements Type of funding sources: Foundation. Main funding source(s): British Heart Foundation Background In patients with coronary artery disease (CAD), increasing myocardial ischaemic burden (MIB) is a strong predictor of adverse events. When measured by cardiovascular magnetic resonance (CMR), a MIB ≥12.5% is considered significant and often used as a threshold to guide revascularisation. Ischaemic scar can cause stress perfusion defects which do not represent ischaemia and should be excluded from the MIB calculation. Conventional bright-blood late gadolinium enhancement (LGE) is able to identify ischaemic scar but can suffer from poor scar-to-blood contrast, making accurate assessment of scar volume difficult. Dark-blood LGE methods increase scar-to-blood contrast and improve scar conspicuity which may impact the calculated scar burden and consequently the estimation of MIB when read in conjunction with perfusion images. Purpose To evaluate the impact of dark-blood LGE versus conventional bright-blood LGE on the estimation of MIB in patients with CAD. Methods 37 patients with suspected or known CAD who had evidence of CMR stress perfusion defects and ischaemic scar on LGE imaging were recruited. Patients underwent adenosine stress perfusion imaging followed by dark-blood LGE then conventional bright-blood LGE imaging at 3T. For dark-blood LGE, phase sensitive inversion recovery imaging with a shorter inversion time to null the LV blood-pool was used without any additional magnetization preparation. For each patient, three short-axis LGE slices were selected to match the three perfusion slice locations. Images were anonymised and analysed in random order. Ischaemic scar burden (ISB) was quantified for both LGE methods using a threshold &gt;5 standard deviations above remote myocardium. Perfusion defect burden (PDB) was quantified by manual contouring of perfusion defects. MIB was calculated by subtracting the ISB from the PDB. Results MIB calculated using dark-blood LGE was 19% less compared to bright-blood LGE (15.7 ± 15.2% vs 19.4 ± 15.2%, p &lt; 0.001). There was a strong positive correlation between the two LGE methods (rs = 0.960, p &lt; 0.001, Figure 1A). Bland-Altman analysis revealed a significant fixed bias (mean bias = -3.6%, bias 95% CI: -2.6 to -4.7%, 95% limits of agreement: -9.8 to 2.5%) with no proportional bias (Figure 1B). MIB was calculated ≥12.5% and &lt;12.5% by both LGE methods in 19 (51%) and 12 (32%) patients respectively. In 6 patients (16%), MIB was ≥12.5% using bright-blood LGE and &lt;12.5% using dark-blood LGE (Figure 1A – orange data points). Overall, when used to classify MIB as &lt;12.5% or ≥12.5%, there was only substantial agreement between the two LGE methods (κ=0.67, 95% CI: 0.45 to 0.90). Conclusions The use of dark-blood LGE in conjunction with perfusion imaging results in a lower estimate of MIB compared to conventional bright-blood LGE. This can cause disagreement around the threshold of clinically significant ischaemia which could impact clinical management in patients being considered for coronary revascularisation. Abstract Figure. Linear regression with corresponding B&A


Sign in / Sign up

Export Citation Format

Share Document