In vivo assessment of anti-CD34 coated ePTFE vascular prostheses

2010 ◽  
Vol 58 (S 01) ◽  
Author(s):  
W Mrowczynski ◽  
A Rungatscher ◽  
F Buchegger ◽  
JC Tille ◽  
D Mugnai ◽  
...  
1999 ◽  
Vol 6 (4) ◽  
pp. 281-290 ◽  
Author(s):  
A N D R E A S VEIHELMANN ◽  
ANTHONY G U S T A V E HARRIS ◽  
F R I T Z KROMBACH ◽  
E L K E SCHÜTZE ◽  
HANS JÜRGEN REFIOR ◽  
...  

1998 ◽  
Vol 22 (3) ◽  
pp. 251-257 ◽  
Author(s):  
Byron Ballou ◽  
Gregory W. Fisher ◽  
Jau-Shyong Deng ◽  
Thomas R. Hakala ◽  
Meera Srivastava ◽  
...  

2021 ◽  
Vol 135 ◽  
pp. 104145
Author(s):  
Yani P. Latul ◽  
Arnoud W. Kastelein ◽  
Patricia W.T. Beemster ◽  
Nienke E. van Trommel ◽  
Can Ince ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Abhishek Kumar ◽  
Minati Choudhury ◽  
Sakshi Dhingra Batra ◽  
Kriti Sikri ◽  
Anushree Gupta

Abstract Objective Endothelin-1 plays an important role in the pathogenesis of severe pulmonary hypertension. The + 139 ‘A’, adenine insertion variant in 5′UTR of edn1 gene has been reported to be associated with increased expression of Endothelin-1 in vitro. The aim of present study was to explore the association of this variant with the circulating levels of Endothelin-1 in vivo using archived DNA and plasma samples from 38 paediatric congenital heart disease (cyanotic and acyanotic) patients with severe pulmonary hypertension. Results The plasma Endothelin-1 levels were highly varied ranging from 1.63 to75.16 pg/ml. The + 139 ‘A’ insertion variant in 5′UTR of edn1 was seen in 8 out of 38 cases with only one acyanotic sample demonstrating homozygosity of inserted ‘A’ allele at + 139 site (4A/4A genotype). The plasma Endothelin-1 levels in children with homozygous variant 3A/3A genotype were comparable in cyanotic and acyanotic groups. Lone 4A/4A acyanotic sample had ET-1 levels similar to the median value of ET-1 associated with 3A/3A genotype and was absent in cyanotic group presumably due to deleterious higher ET-1 levels. The discussed observations, limited by the small sample size, are suggestive of homozygous adenine insertion variant posing a risk in cyanotic babies with Severe Pulmonary Hypertension.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 99
Author(s):  
Liviu Duta

The aim of this review is to present the state-of-the art achievements reported in the last two decades in the field of pulsed laser deposition (PLD) of biocompatible calcium phosphate (CaP)-based coatings for medical implants, with an emphasis on their in vivo biological performances. There are studies in the dedicated literature on the in vivo testing of CaP-based coatings (especially hydroxyapatite, HA) synthesized by many physical vapor deposition methods, but only a few of them addressed the PLD technique. Therefore, a brief description of the PLD technique, along with some information on the currently used substrates for the synthesis of CaP-based structures, and a short presentation of the advantages of using various animal and human implant models will be provided. For an in-depth in vivo assessment of both synthetic and biological-derived CaP-based PLD coatings, a special attention will be dedicated to the results obtained by standardized and micro-radiographies, (micro) computed tomography and histomorphometry, tomodensitometry, histology, scanning and transmission electron microscopies, and mechanical testing. One main specific result of the in vivo analyzed studies is related to the demonstrated superior osseointegration characteristics of the metallic (generally Ti) implants functionalized with CaP-based coatings when compared to simple (control) Ti ones, which are considered as the “gold standard” for implantological applications. Thus, all such important in vivo outcomes were gathered, compiled and thoroughly discussed both to clearly understand the current status of this research domain, and to be able to advance perspectives of these synthetic and biological-derived CaP coatings for future clinical applications.


Sign in / Sign up

Export Citation Format

Share Document