SPECT-Befunde bei Hemiparkinson-Syndrom mit 99mTc-HMPAO

1989 ◽  
Vol 28 (03) ◽  
pp. 92-94 ◽  
Author(s):  
C. Neumann ◽  
H. Baas ◽  
R. Hefner ◽  
G. Hör

The symptoms of Parkinson’s disease often begin on one side of the body and continue to do so as the disease progresses. First SPECT results in 4 patients with hemiparkinsonism using 99mTc-HMPAO as perfusion marker are reported. Three patients exhibited reduced tracer uptake in the contralateral basal ganglia One patient who was under therapy for 1 year, showed a different perfusion pattern with reduced uptake in both basal ganglia. These results might indicate reduced perfusion secondary to reduced striatal neuronal activity.

2008 ◽  
Vol 100 (5) ◽  
pp. 2515-2524 ◽  
Author(s):  
F. Steigerwald ◽  
M. Pötter ◽  
J. Herzog ◽  
M. Pinsker ◽  
F. Kopper ◽  
...  

We recorded resting-state neuronal activity from the human subthalamic nucleus (STN) during functional stereotactic surgeries. By inserting up to five parallel microelectrodes for single- or multiunit recordings and applying statistical spike-sorting methods, we were able to isolate a total of 351 single units in 65 patients with Parkinson's disease (PD) and 33 single units in 9 patients suffering from essential tremor (ET). Among these were 93 pairs of simultaneously recorded neurons in PD and 17 in ET, which were detected either by the same ( n = 30) or neighboring microelectrodes ( n = 80). Essential tremor is a movement disorder without any known basal ganglia pathology and with normal dopaminergic brain function. By comparing the neuronal activity of the STN in patients suffering from PD and ET we intended to characterize, for the first time, changes of basal ganglia activity in the human disease state that had previously been described in animal models of Parkinson's disease. We found a significant increase in the mean firing rate of STN neurons in PD and a relatively larger fraction of neurons exhibiting burstlike activity compared with ET. The overall proportion of neurons exhibiting intrinsic oscillations or interneuronal synchronization as defined by significant spectral peaks in the auto- or cross-correlations functions did not differ between PD and ET when considering the entire frequency range of 1–100 Hz. The distribution of significant oscillations across the theta (1–8 Hz), alpha (8–12 Hz), beta (12–35 Hz), and gamma band (>35 Hz), however, was uneven in ET and PD, as indicated by a trend in Fisher's exact test ( P = 0.05). Oscillations and pairwise synchronizations within the 12- to 35-Hz band were a unique feature of PD. Our results confirm the predictions of the rate model of Parkinson's disease. In addition, they emphasize abnormalities in the patterning and dynamics of neuronal discharges in the parkinsonian STN, which support current concepts of abnormal motor loop oscillations in Parkinson's disease.


2019 ◽  
Vol 122 (1) ◽  
pp. 203-231 ◽  
Author(s):  
Pär Halje ◽  
Ivani Brys ◽  
Juan J. Mariman ◽  
Claudio da Cunha ◽  
Romulo Fuentes ◽  
...  

Cortico-basal ganglia circuits are thought to play a crucial role in the selection and control of motor behaviors and have also been implicated in the processing of motivational content and in higher cognitive functions. During the last two decades, electrophysiological recordings in basal ganglia circuits have shown that several disease conditions are associated with specific changes in the temporal patterns of neuronal activity. In particular, synchronized oscillations have been a frequent finding suggesting that excessive synchronization of neuronal activity may be a pathophysiological mechanism involved in a wide range of neurologic and psychiatric conditions. We here review the experimental support for this hypothesis primarily in relation to Parkinson’s disease but also in relation to dystonia, essential tremor, epilepsy, and psychosis/schizophrenia.


2011 ◽  
Vol 122 ◽  
pp. S89-S90
Author(s):  
T. Sieger ◽  
C. Bonnet ◽  
T. Serranová ◽  
J. Wild ◽  
D. Novák ◽  
...  

Neurosurgery ◽  
2003 ◽  
Vol 53 (5) ◽  
pp. 1146-1149 ◽  
Author(s):  
Philip A. Starr ◽  
Philip V. Theodosopoulos ◽  
Robert Turner

Abstract THE BASAL GANGLIA have important roles in somatic motor, oculomotor, limbic, and associative functions. These functions are represented in anatomically distinct territories in each basal ganglion nucleus. During surgery of the subthalamic nucleus for Parkinson's disease, the primary goal is to influence the physiology of the motor territory without affecting nonmotor areas. This article describes the use of movement-related cellular activity during single-unit microelectrode mapping to identify and to navigate within the motor territory of the subthalamic nucleus.


2020 ◽  
Author(s):  
Dan Valsky ◽  
Zvi Israel ◽  
Thomas Boraud ◽  
Hagai Bergman ◽  
Marc Deffains

AbstractDopamine depletion of the striatum plays a key role in the pathophysiology of Parkinson’s disease (PD), but our understanding of the changes in the discharge rate and pattern of the striatal projection neurons (SPNs) remains limited. Here, we recorded multi-unit signals from the striatum of PD (N = 934) and dystonic (N = 718) patients undergoing deep brain stimulation surgeries. Using an innovative automated data-driven approach to classify striatal units, we showed that the SPN discharge rate is inversely proportional to the isolation quality and stationarity of the SPNs. In contrast to earlier studies in both PD patients and the non-human primate model of PD, we found no drastic changes in the spiking activity (discharge rate and pattern) of the well-isolated and stationary SPNs of PD patients compared to either dystonic patients or the normal levels of striatal activity reported in healthy animals. Moreover, cluster analysis using SPN discharge properties did not characterize two well-separated SPN subpopulations. There was therefore no specific SPN subpopulation (D1 or D2 SPNs) strongly affected by the pathological state. Instead, our results suggest that moderate changes in SPN discharge are most likely amplified by basal ganglia downstream structures, thus leading to the clinical (motor and non-motor) symptoms of PD.Significance statementIn Parkinson’s disease (PD), the loss of the midbrain dopaminergic neurons leads to massive striatal dopamine depletion that provokes abnormal activity throughout the basal ganglia. However, the impact of dopamine depletion on neuronal activity in the striatum is still highly debated. We recorded and examined the neuronal activity in striatum of PD and dystonic patients undergoing deep brain stimulation surgeries. We found that striatal activity was not drastically higher in PD patients compared to either dystonic patients or the normal levels of striatal activity reported in animal studies. In PD, moderate changes in striatal basal activity are therefore most likely amplified by basal ganglia downstream structures.


Author(s):  
J. Eric Ahlskog

In Chapters 1 and 4, we briefly summarized the symptoms of parkinsonism. Parkinsonism implies movement problems that are typical of Parkinson’s disease. They remain treatment issues during the lifetime of people with Parkinson’s disease, even if dementia develops. Similarly, parkinsonism also typically occurs in DLB, although to variable degrees. In these disorders parkinsonism primarily reflects low brain dopamine levels and improves with dopamine replacement therapy, often markedly. Parkinsonism occurs when a region of the brain called the basal ganglia ceases to work properly (see Figure 4.2 in Chapter 4). As discussed in Chapter 4, the substantia nigra is a crucial regulator of basal ganglia activity, which is mediated by dopamine release in the striatum. The substantia nigra degenerates in these Lewy disorders and, as a result, brain dopamine declines. With a decline in dopamine, movement slows. Bradykinesia is the medical term for such slowness. This manifests as not only slowed movement but also less movement and smaller than normal movements. Unconscious automatic movements, such as blinking or arm swing, diminish. A unique tremor of the hands (sometimes legs) often develops when these limbs are in a relaxed position (rest tremor). For unknown reasons, the brain is not affected symmetrically, hence, neither is the body. Typically, one side of the body is much more impaired than the other. The extent to which these symptoms develop differs from person to person and includes various combinations of the following components. The slowness may be apparent on one or both sides of the body. For example, one leg may lag behind when walking. The overall appearance is characterized by moving much slower than expected for one’s age. The person feels as if they are moving in molasses—everything slows down. Many of our daily activities involve repeated small movements, such as writing or brushing teeth. In the Lewy conditions of DLB and PDD, the size (amplitude) of repetitive movements diminishes, impairing the activity. This is exemplified by the small handwriting of someone with parkinsonism, termed micrographia. Clinicians assess repetitive motor function by asking the patient to repetitively tap the thumb and index finger.


2017 ◽  
Vol 117 (6) ◽  
pp. 2242-2249 ◽  
Author(s):  
Jing Wang ◽  
Luke A. Johnson ◽  
Alicia L. Jensen ◽  
Kenneth B. Baker ◽  
Gregory F. Molnar ◽  
...  

A number of studies suggest that Parkinson’s disease (PD) is associated with alterations of neuronal activity patterns in the basal-ganglia-thalamocortical circuit. There are limited electrophysiological data, however, describing how the premotor cortex, which is involved in movement and decision-making, is likely impacted in PD. In this study, spontaneous local field potential (LFP) and single unit neuronal activity were recorded in the dorsal premotor area of nonhuman primates in both the naïve and parkinsonian state using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of parkinsonism. In both animals, we observed a shift of power in LFP power spectral densities (1−350 Hz) from higher to lower frequency bands; parkinsonism resulted in increased power in frequencies <8 Hz and decreased power at frequencies >30 Hz. A comparable but not identical trend was observed in the power spectral analysis of single unit spike trains: alpha power increased in both animals and gamma power decreased in one; power in other frequency bands remaining unchanged. Although not consistent across animals, we also observed changes in discharge rates and bursting activity. Overall, the LFP and single unit analysis suggest that abnormalities in premotor neural activity are a feature of parkinsonism, although specific details of those abnormalities may differ between subjects. This study further supports the concept that PD is a network disorder that induces abnormal spontaneous neural activities across the basal-ganglia-thalamocortical circuit including the premotor cortex and provides foundational knowledge for future studies regarding the relationship between changes in neuronal activity in this region and the development of motor deficits in PD. NEW & NOTEWORTHY This study begins to fill a gap in knowledge regarding how Parkinson’s disease (PD) may cause abnormal functioning of the premotor cortex. It is novel as the premotor activity is examined in both the naïve and parkinsonian states, in the same subjects, at the single unit and LFP level. It provides foundational knowledge on which to build future studies to explore the relationships between premotor activities and specific parkinsonian motor and cognitive deficits.


Sign in / Sign up

Export Citation Format

Share Document