Characterizing Decision Support Telemedicine Systems

2006 ◽  
Vol 45 (05) ◽  
pp. 523-527 ◽  
Author(s):  
A. Abu-Hanna ◽  
B. Nannings

Summary Objectives: Decision Support Telemedicine Systems (DSTS) are at the intersection of two disciplines: telemedicine and clinical decision support systems (CDSS). The objective of this paper is to provide a set of characterizing properties for DSTSs. This characterizing property set (CPS) can be used for typing, classifying and clustering DSTSs. Methods: We performed a systematic keyword-based literature search to identify candidate-characterizing properties. We selected a subset of candidates and refined them by assessing their potential in order to obtain the CPS. Results: The CPS consists of 14 properties, which can be used for the uniform description and typing of applications of DSTSs. The properties are grouped in three categories that we refer to as the problem dimension, process dimension, and system dimension. We provide CPS instantiations for three prototypical applications. Conclusions: The CPS includes important properties for typing DSTSs, focusing on aspects of communication for the telemedicine part and on aspects of decisionmaking for the CDSS part. The CPS provides users with tools for uniformly describing DSTSs.

2021 ◽  
Author(s):  
Hector Acosta-Garcia ◽  
Ingrid Ferrer-López ◽  
Juan Ruano-Ruiz ◽  
Bernardo Santos-Ramos ◽  
Teresa Molina-López

Abstract Background Computerized clinical decision support systems are used by clinicians at the point-of-care to improve quality of healthcare processes (prescribing error prevention, adherence to clinical guidelines...) and clinical outcomes (preventive, therapeutic, and diagnostics). Attempts to summarize results of computerized clinical decision support systems to support prescription in primary care have been challenging, and most systematic reviews and meta-analyses failed due to an extremely high degree of heterogeneity present among the included primary studies. The aim of our study will be to synthesize the evidence, considering all methodological factors that could explain these differences, and to build an evidence and gap map to identify important remaining research questions. Methods A literature search will be conducted from January 2010 onwards in Medline, Embase, The Cochrane Library and Web of Science databases. Two reviewers will independently screen all citations, full-text and abstract data. The study methodological quality and risk of bias will be appraised using appropriate tools if applicable. A flow diagram with the screened studies will be presented, and all included studies will be displayed using interactive evidence and gap maps. Results will be reported in accordance with recommendations from The Campbell Collaboration on the development of evidence and gap maps. Discussion Evidence behind computerized clinical decision support systems to support prescription use in primary care, has so far been difficult to be synthesized. Evidence and gap maps represent an innovative approach that has emerged and is increasingly being used to address a broader research question, where multiple types of intervention and outcomes reported may be evaluated. Broad inclusion criteria have been chosen with regards to study designs, in order to collect all available information. Regarding the limitations we will only include English and Spanish language studies from the last 10 years, we will not perform a grey literature search, and we will not carry out a meta-analysis due to the predictable heterogeneity of available studies. Systematic Review registration: This study is registered in Open Science Framework https://bit.ly/2RqKrWp


1993 ◽  
Vol 32 (01) ◽  
pp. 12-13 ◽  
Author(s):  
M. A. Musen

Abstract:Response to Heathfield HA, Wyatt J. Philosophies for the design and development of clinical decision-support systems. Meth Inform Med 1993; 32: 1-8.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
S M Jansen-Kosterink ◽  
M Cabrita ◽  
I Flierman

Abstract Background Clinical Decision Support Systems (CDSSs) are computerized systems using case-based reasoning to assist clinicians in making clinical decisions. Despite the proven added value to public health, the implementation of CDSS clinical practice is scarce. Particularly, little is known about the acceptance of CDSS among clinicians. Within the Back-UP project (Project Number: H2020-SC1-2017-CNECT-2-777090) a CDSS is developed with prognostic models to improve the management of Neck and/or Low Back Pain (NLBP). Therefore, the aim of this study is to present the factors involved in the acceptance of CDSSs among clinicians. Methods To assess the acceptance of CDSSs among clinicians we conducted a mixed method analysis of questionnaires and focus groups. An online questionnaire with a low-fidelity prototype of a CDSS (TRL3) was sent to Dutch clinicians aimed to identify the factors influencing the acceptance of CDSSs (intention to use, perceived threat to professional autonomy, trusting believes and perceived usefulness). Next to this, two focus groups were conducted with clinicians addressing the general attitudes towards CDSSs, the factors determining the level of acceptance, and the conditions to facilitate use of CDSSs. Results A pilot-study of the online questionnaire is completed and the results of the large evaluation are expected spring 2020. Eight clinicians participated in two focus groups. After being introduced to various types of CDSSs, participants were positive about the value of CDSS in the care of NLBP. The clinicians agreed that the human touch in NLBP care must be preserved and that CDSSs must remain a supporting tool, and not a replacement of their role as professionals. Conclusions By identifying the factors hindering the acceptance of CDSSs we can draw implications for implementation of CDSSs in the treatment of NLBP.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Elizabeth Ford ◽  
Natalie Edelman ◽  
Laura Somers ◽  
Duncan Shrewsbury ◽  
Marcela Lopez Levy ◽  
...  

Abstract Background Well-established electronic data capture in UK general practice means that algorithms, developed on patient data, can be used for automated clinical decision support systems (CDSSs). These can predict patient risk, help with prescribing safety, improve diagnosis and prompt clinicians to record extra data. However, there is persistent evidence of low uptake of CDSSs in the clinic. We interviewed UK General Practitioners (GPs) to understand what features of CDSSs, and the contexts of their use, facilitate or present barriers to their use. Methods We interviewed 11 practicing GPs in London and South England using a semi-structured interview schedule and discussed a hypothetical CDSS that could detect early signs of dementia. We applied thematic analysis to the anonymised interview transcripts. Results We identified three overarching themes: trust in individual CDSSs; usability of individual CDSSs; and usability of CDSSs in the broader practice context, to which nine subthemes contributed. Trust was affected by CDSS provenance, perceived threat to autonomy and clear management guidance. Usability was influenced by sensitivity to the patient context, CDSS flexibility, ease of control, and non-intrusiveness. CDSSs were more likely to be used by GPs if they did not contribute to alert proliferation and subsequent fatigue, or if GPs were provided with training in their use. Conclusions Building on these findings we make a number of recommendations for CDSS developers to consider when bringing a new CDSS into GP patient records systems. These include co-producing CDSS with GPs to improve fit within clinic workflow and wider practice systems, ensuring a high level of accuracy and a clear clinical pathway, and providing CDSS training for practice staff. These recommendations may reduce the proliferation of unhelpful alerts that can result in important decision-support being ignored.


2008 ◽  
Vol 32 (5) ◽  
pp. 361-368 ◽  
Author(s):  
Timothy A. D. Graham ◽  
Michael J. Bullard ◽  
Andre W. Kushniruk ◽  
Brian R. Holroyd ◽  
Brian H. Rowe

Sign in / Sign up

Export Citation Format

Share Document