scholarly journals Three-Dimensional Finite Element Analysis to Evaluate Stress Distribution in Tooth and Implant-Supported Fixed Partial Denture–An In Vitro Study

2020 ◽  
Vol 8 (03) ◽  
pp. 084-091
Author(s):  
Himani Jain ◽  
Tarun Kalra ◽  
Manjit Kumar ◽  
Ajay Bansal ◽  
Deepti Jain

Abstract Introduction This study was undertaken to assess the influence of different superstructure materials, when subjected to occlusal loading, on the pattern of stress distribution in tooth-supported, implant-supported, and tooth implant-supported fixed partial prostheses, using the finite element analysis with a comparative viewpoint. Materials and Methods The geometric models of implant and mandibular bone were generated. Three models were created in accordance with the need of the study. The first model was given a tooth-supported fixed partial prosthesis. The second model was given tooth implant-supported fixed partial prosthesis, and the third model was given implant-supported fixed partial prosthesis. Forces of 100 N and 50 N were applied axially and buccolingually, respectively. Results The present study compared the stresses arising in the natural tooth, implant, and the whole prostheses under simulated axial and buccolingual loading of three types of fixed partial dentures, namely, tooth-supported, tooth implant-supported, and implant-supported fixed partial dental prostheses using three different types of materials. Conclusion The pattern of stress distribution did not appear to be significantly affected by the type of prosthesis materials in all models. The maximum stress concentrations were found in the alveolar bone around the neck of the teeth and implants.

2021 ◽  
Vol 11 (3) ◽  
pp. 1220
Author(s):  
Azeem Ul Yaqin Syed ◽  
Dinesh Rokaya ◽  
Shirin Shahrbaf ◽  
Nicolas Martin

The effect of a restored machined hybrid dental ceramic crown–tooth complex is not well understood. This study was conducted to determine the effect of the stress state of the machined hybrid dental ceramic crown using three-dimensional finite element analysis. Human premolars were prepared to receive full coverage crowns and restored with machined hybrid dental ceramic crowns using the resin cement. Then, the teeth were digitized using micro-computed tomography and the teeth were scanned with an optical intraoral scanner using an intraoral scanner. Three-dimensional digital models were generated using an interactive image processing software for the restored tooth complex. The generated models were imported into a finite element analysis software with all degrees of freedom concentrated on the outer surface of the root of the crown–tooth complex. To simulate average occlusal load subjected on a premolar a total load of 300 N was applied, 150 N at a buccal incline of the palatal cusp, and palatal incline of the buccal cusp. The von Mises stresses were calculated for the crown–tooth complex under simulated load application was determined. Three-dimensional finite element analysis showed that the stress distribution was more in the dentine and least in the cement. For the cement layer, the stresses were more concentrated on the buccal cusp tip. In dentine, stress was more on the cusp tips and coronal 1/3 of the root surface. The conventional crown preparation is a suitable option for machined polymer crowns with less stress distribution within the crown–tooth complex and can be a good aesthetic replacement in the posterior region. Enamic crowns are a good viable option in the posterior region.


Sign in / Sign up

Export Citation Format

Share Document