Platelet Function and Turnover in Essential Thrombocythemia: A Systematic Review

2021 ◽  
Vol 47 (01) ◽  
pp. 090-101
Author(s):  
Joachim Kvernberg ◽  
Erik Lerkevang Grove ◽  
Hans Beier Ommen ◽  
Anne-Mette Hvas

AbstractEssential thrombocythemia (ET) is a myeloproliferative neoplasm characterized by increased platelet counts. ET has an incidence of 0.6 to 2.5 per 100,000 per year in Europe and North America. The disease is characterized by an increased thromboembolic risk, possibly caused by increased platelet counts. Furthermore, increased platelet function and/or increased platelet turnover may play a role. We aimed to explore: (1) whether platelet function and platelet turnover are increased in ET patients compared with healthy controls, and (2) whether these parameters are associated with increased thromboembolic risk and, therefore, may support decision-making on treatment in ET patients. We performed a systematic literature search on March 20, 2020 in Embase and PubMed following the Preferred Reporting Items for Systematic and Meta-Analysis (PRISMA) guidelines. In total, 1,923 articles were identified, 38 of which were included according to prespecified inclusion and exclusion criteria. Among the 38 studies, platelet activation (CD36 and CD62P) was investigated in 18 studies and was found to be increased in 12 of these. Platelet aggregation was investigated in 21 studies and was reported to be reduced in 20 of them. Platelet turnover (immature platelet count and mean platelet volume) was investigated in five studies with inconclusive results. No parameters were reported to predict the risk of thromboembolic events. In conclusion, platelet activation was increased in ET patients, but platelet aggregation was reduced. Future studies exploring markers of thromboembolic risk in ET patients are warranted.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4253-4253
Author(s):  
Marina Marchetti ◽  
Sara Gamba ◽  
Cinzia Giaccherini ◽  
Cristina Verzeroli ◽  
Laura Russo ◽  
...  

Abstract INTRODUCTION: Essential Thrombocythemia (ET) is a myeloproliferative neoplasm characterized by an increased rate of thrombotic complications. Antithrombotic prophylaxis with aspirin (ASA), alone or in combination with cytoreduction with hydroxyurea (HU), is widely utilized in ET patients. However, thrombosis occurrence/recurrence in spite of antithrombotic prophylaxis remains a relevant issue. Growing data support the possible contribution to this failure of the inter-individual variability of pharmacological ASA response. AIM: Aim of this study was to characterize, in a group of ET patients receiving 100 mg/d ASA, the platelet reactivity in terms of platelet aggregation and activation properties. MATERIALS AND METHODS: Venous blood samples were obtained from 77 ET patients (26M/51F), and two control groups, i.e., one including 72 non-ET patients receiving chronic ASA prophylaxis, and the other including 111 healthy control subjects (57M/54F). The mutational status of ET was: 35 patients were JAK2V617F⁺, 22 CALR⁺, 3 MPL⁺, and 17 triple negative. Thirty-three ET patients were on ASA+HU, 23 on ASA alone, 5 on HU alone, and 16 were not receiving any of these drugs. Platelet aggregation was assessed in whole blood by the Multiplate® analyzer (Roche). The platelet response to the thrombin receptor activating peptide (TRAP) trigger was the measure of the overall platelet aggregation capacity, while the response to the arachidonic acid (AA) trigger was the measure of ASA effect on platelet aggregation. A normalized AA-induced aggregation (r-AA-agg), defined as AA/TRAP ratio, was calculated for each sample to reflect the individual variation of platelet inhibition by ASA. The platelet activation status was evaluated before and after aggregation by measuring the surface expression of CD62P (P-selectin) by flow cytometry (Accuri™ C6, BD Bioscience). RESULTS: The analysis of subgroups according to treatments shows that AA-induced platelet aggregation in ASA- and ASA+HU-treated ET patients was significantly lower compared to non-ASA ET subjects (p<0.001), and was significantly greater compared to ASA-treated non-ET patients (145±85 AU; p<0.001). The same results were observed with TRAP-induced platelet aggregation. Accordingly, the r-AA-agg. was greater in ET subjects on ASA (=53%) or ASA+HU (=50%) as compared to non-ET ASA-treated individuals (=19%). Furthermore, among ET patients on ASA±HU, those with platelet >450x109/L showed AA-induced aggregation significantly greater than subjects with platelet <450x109/L. The increment of platelet surface CD62P expression after AA stimulation (as a marker of platelet activation) was not influenced by anti-platelet therapy, but was significantly associated with JAK2V617F mutation. CONCLUSIONS: Our data show that in more than 70% of ET patients, in spite of ASA intake, the platelet reactivity remains higher than in non-ET patients receiving the same drug regimen. This phenomenon, together with the so-called "turnover" resistance, i.e. increased platelet turnover associated to short aspirin half-life, may contribute to aspirin failure in ET. Studies are necessary to evaluate the efficacy and safety of a different dose or timing of ASA administration in these patients. Project funded by "AIRC-IG2013" grant Nr. 14505 from the "Italian Association for Cancer Research" (A.I.R.C.). Disclosures Falanga: Pfizer: Speakers Bureau; Aspen: Speakers Bureau; Janssen: Speakers Bureau.


2019 ◽  
Vol 47 (4) ◽  
pp. 1731-1739 ◽  
Author(s):  
Jun Lu ◽  
Peng Hu ◽  
Guangyu Wei ◽  
Qi Luo ◽  
Jianlin Qiao ◽  
...  

Objective To investigate the role of alteplase, a widely-used thrombolytic drug, in platelet function. Methods Human platelets were incubated with different concentrations of alteplase followed by analysis of platelet aggregation in response to adenosine diphosphate (ADP), collagen, ristocetin, arachidonic acid or epinephrine using light transmittance aggregometry. Platelet activation and surface levels of platelet receptors GPIbα, GPVI and αIIbβ3 were analysed using flow cytometry. The effect of alteplase on clot retraction was also examined. Results This study demonstrated that alteplase significantly inhibited platelet aggregation in response to ADP, collagen and epinephrine in a dose-dependent manner, but it did not affect ristocetin- or arachidonic acid-induced platelet aggregation. Alteplase did not affect platelet activation as demonstrated by no differences in P-selectin levels and PAC-1 binding being observed in collagen-stimulated platelets after alteplase treatment compared with vehicle. There were no changes in the surface levels of the platelet receptors GPIbα, GPVI and αIIbβ3 in alteplase-treated platelets. Alteplase treatment reduced thrombin-mediated clot retraction. Conclusions Alteplase inhibits platelet aggregation and clot retraction without affecting platelet activation and surface receptor levels.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3904-3904
Author(s):  
Samantha Baldassarri ◽  
Alessandra Bertoni ◽  
Paolo Lova ◽  
Stefania Reineri ◽  
Chiara Sarasso ◽  
...  

Abstract 2-Arachidonoylglycerol (2-AG) is a naturally occurring monoglyceride that activates cannabinoid receptors and meets several key requisites of an endogenous cannabinoid substance. It is present in the brain and hematopoietic cells, including macrophages, lymphocytes and platelets. 2-AG is released from cells in a stimulus-dependent manner and is rapidly eliminated by uptake into cells and enzymatic hydrolysis in arachidonic acid and glycerol. 2-AG might exert a very fine control on platelet function either through mechanisms intertwining with the signal transduction pathways used by platelet agonists or through mechanisms modulating specific receptors. The aim of this study was to define the role of 2-AG in human platelets and characterize the mechanisms by which it performs its action. Platelets from healthy donors were isolated from plasma by differential centrifugations and gel-filtration on Sepharose 2B. The samples were incubated with 2-AG (10–100 μM) under constant stirring in the presence or absence of various inhibitors. Platelet aggregation was measured by Born technique. We have found that stimulation of human platelets with 2-AG induced irreversible aggregation, which was significantly enhanced by co-stimulation with ADP (1–10 μM). Furthermore, 2-AG-dependent platelet aggregation was completely inhibited by ADP scavengers, aspirin, and Rho kinase inhibitor, as well as by antagonists of the 2-AG receptor (CB2), of the ADP P2Y12 receptor, and of the thromboxane A2 receptor. We further investigated the role of endocannabinoids on calcium mobilization. Intracellular [Ca2+] was measured using FURA-2-loaded platelets prewarmed at 37°C under gentle stirring in a spectrofluorimeter. 2-AG induced rapid increase of cytosolic [Ca2+] in a dose-dependent manner. This effect was partially blocked by ADP scavengers and CB2 receptor antagonists. Furthermore, 2-AG-induced [Ca2+] mobilization was totally suppressed by aspirin or the thromboxane A2 receptor antagonist. These results suggest that 2-AG is able to trigger platelet activation, and that this action is partially mediated by CB2 receptor and ADP. Furthmore, 2-AG-dependent platelet activation is totally dependent on thromboxane A2 generation.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3197-3197 ◽  
Author(s):  
Yan Yang ◽  
Zhenyin Shi ◽  
Adili Reheman ◽  
Wuxun Jin ◽  
Conglei Li ◽  
...  

Abstract Abstract 3197 Background: Thrombosis and cardiovascular diseases (CVDs) result from blood vessel occlusion by inappropriately activated platelets. They are the leading causes of morbidity and mortality worldwide. Anthocyanins are major phytochemicals abundant in plant food and have been shown to play a protective role against CVDs. Our previous studies have demonstrated that anthocyanins are antioxidative and prevent inflammation (J Biol Chem. 2005; 280:36792-01; Arterioscler Thromb Vasc Biol. 2007; 27:519-24), which may indirectly affect platelet function. It has also been reported that anthocyanins affect platelet activities in whole blood and platelet rich plasma (PRP). However, the direct effects of anthocyanins on platelet function and thrombus formation have not been studied. Methods: Here we investigated the effects of anthocyanins on thrombosis using purified platelets as well as several thrombosis models in vitro and in vivo. Cyaniding-3-gulucoside (Cy-3-g) and delphinidin-3-glucoside (Dp-3-g), the two predominantly bioactive compounds of anthocyanin preparations, were prepared from Polyphenol AS Company in Norway. Purified gel-filtered platelets and PRP from healthy human volunteers and C57BL/6J mice were incubated at 37°C for 10 minutes with different concentrations (0.5μM, 5μM and 50μM) of Cy-3-g, Dp-3-g or PBS buffer as a control. Platelet aggregation was assessed by aggregometry using 5μM ADP, 10μg/ml collagen, or 100μM thrombin receptor activating peptide (TRAP; AYPGKF) as agonists. Platelet adhesion and aggregation were assessed in response to an immobilized collagen matrix in an ex vivo perfusion chamber at both high (1800 s-1) and low (600 s-1) shear rates. The expression of activated GPIIbIIIa was determined via PAC-1 monoclonal antibody in flow cytometry. Lastly, the effects of anthocyanins on thrombus formation in C57BL/6J mice were assessed using a FeCl3-induced intravital microscopy thrombosis model. Results: Both Cy-3-g and Dp-3-g significantly inhibited platelet aggregation induced by collagen and TRAP in gel-filtered platelets, and inhibited aggregation induced by ADP, TRAP and collagen in human and mouse PRP. These inhibitory functions were observed at Cy-3-g and Dp-3-g doses as low as 0.5μM. Cy-3-g and Dp-3-g also reduced the surface expression of activated GPIIbIIIa on resting human platelets in a dose-dependent manner. These compounds also markedly reduced platelet adhesion and aggregation in perfusion chamber assays at both low and high shear rates. Using intravital microscopy, we further demonstrated that Cy-3-g and Dp-3-g decreased platelet deposition, destabilized thrombi, and prolonged the time required for thrombus formation and vessel occlusion. Conclusions: our data clearly demonstrated for the first time that anthocyanin compounds directly inhibited platelet activation, adhesion and aggregation, as well as attenuated thrombus growth at both arterial and veinous shear stresses. These effects on platelets likely contribute to the protective effects of anthocyanins against thrombosis and CVDs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3534-3534
Author(s):  
Andrew L. Frelinger ◽  
Anja J Gerrits ◽  
Michelle A. Berny-Lang ◽  
Travis Brown ◽  
Sabrina L. Carmichael ◽  
...  

Abstract Background Immune thrombocytopenia (ITP) patients with similarly low platelet counts differ in their tendency to bleed. Aim To determine if differences in platelet function in ITP patients with similarly low platelet counts partly account for the variation in bleeding tendency. Methods The relationship between bleeding scores and platelet function markers was investigated in a single center cross-sectional study of pediatric patients with ITP. Following informed consent, blood was collected from ITP patients and bleeding was graded using the Buchanan and Adix Score (J Pediatr 2002) at routine clinic visits or while admitted to the hospital. Bleeding scores were obtained by one of three hematologists blinded to platelet function results, and investigators performing platelet function tests were blinded to clinical results. Platelet function was assessed by whole blood flow cytometric measurement of unstimulated, ADP- or TRAP-stimulated platelet surface activated GPIIb-IIIa (as measured by PAC1 binding), P-selectin, and GPIb and by unstimulated, convulxin-, or ADP plus TRAP-stimulated platelet surface phosphatidylserine expression (as determined by annexin V binding). Platelet count, immature platelet fraction (IPF) and mean platelet volume (MPV) were determined by a Sysmex XE-2100, and platelet forward angle light scatter (FSC) was measured by flow cytometry. Results Platelet function and bleeding scores were evaluated in 34 consecutive consenting pediatric ITP patients (16 female, 18 male, age 9.7 ± 5.7 years [mean ± SD]). ITP was newly diagnosed (< 3 months) in 10 patients, persistent (3 -- 12 months) in 7 patients, and chronic (>12 months) in 17 patients. Platelet count at the time of the blood draw was 47 ± 55 x 109/L. The median bleeding score on day of blood draw was 1 (range 0 to 4). By univariate analysis, higher IPF, and lower platelet count were significantly associated with a higher bleeding score (odds ratio [OR] >1, p<0.05) but MPV was not. Multiple measures of platelet function were associated with bleeding scores by univariate analysis: higher levels of platelet FSC (a measure affected by multiple variables including size) surface GPIb on unstimulated, ADP- or TRAP-stimulated platelets, surface P-selectin on unstimulated platelets, and platelet FSC were associated with increased odds for higher bleeding scores (ORs each >1, p<0.05), while higher ADP- and TRAP-stimulated platelet surface activated GPIIb-IIIa and P-selectin were associated with reduced odds of higher bleeding scores (ORs each <1, p<0.05). After adjustment for platelet count, higher levels of platelet surface P-selectin on unstimulated platelets, GPIb on TRAP-stimulated platelets, and FSC remained significantly associated with increased odds for higher bleeding scores (Figure), but IPF did not. Similarly, after adjustment for platelet count, higher TRAP-stimulated percentage of P-selectin and activated GPIIb-IIIa positive platelets remained significantly associated with reduced odds of higher bleeding scores (Figure). These findings were independent of recent ITP-related treatment. Conclusions In this study of pediatric ITP patients, we identified selected platelet function markers which, independent of platelet count, are associated with increased (platelet FSC, platelet surface P-selectin on unstimulated platelets, and GPIb on TRAP-stimulated platelets) or decreased (TRAP-stimulated percent P-selectin and GPIIb-IIIa positive platelets) odds of high bleeding scores. Possible hypotheses to explain these associations are as follows: 1) Increased P-selectin on unstimulated platelets demonstrates in vivo platelet activation, possibly as a consequence of the recent bleeding. 2) Because platelet activation results in a reduction in platelet surface GPIb and increases in platelet surface activated GPIIb-IIIa and P-selectin, the ORs associated with all of these markers could be explained by reduced ability of platelets in patients with higher bleeding scores to respond to agonists. 3) While platelet FSC is partly related to size, the finding that MPV and IPF, adjusted for platelet count, were not associated with bleeding score suggests that factors other than size account for the association of platelet FSC with higher bleeding scores. Further study is required to validate these findings and determine if differences in platelet function are associated with future risk for bleeding. Disclosures: Off Label Use: Eltrombopag was given to WAS/XLT patients for treatment of thrombocytopenia. Neufeld:Shire: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Apopharma: Consultancy. Michelson:Sysmex: Honoraria.


1978 ◽  
Vol 40 (02) ◽  
pp. 207-211 ◽  
Author(s):  
Thomas C Detwiler ◽  
Israel F Charo ◽  
Richard D Feinman

SummaryIt is generally believed that calcium ions play a key role in regulation of platelet function.This is based on 3 types of evidence.1. Analogies with other cells. Calcium ions are known to trigger secretion and contraction in many cells, possibly reflecting a general role for calcium in all secretion and contraction.2. Indirect evidence. Platelet aggregation and secretion are induced by divalent cation ionophores. The response to the ionophore A23187 is identical to that induced by other potent stimuli.3. Direct evidence. Platelet activation can be blocked by drugs (e. g. certain local anesthetics) that block release of calcium ions from sarcoplasmic reticulum; the inhibition can be overcome by addition of extracellular calcium in the presence of a calcium ionophore. While this does not constitute definitive proof, the central role for calcium ions remains an attractive hypothesis that justifies attempts to further define calcium pools and fluxes in platelets.


2021 ◽  
pp. ASN.2020101440
Author(s):  
Constance C.F.M.J. Baaten ◽  
Marieke Sternkopf ◽  
Tobias Henning ◽  
Nikolaus Marx ◽  
Joachim Jankowski ◽  
...  

BackgroundPatients with CKD are at high risk for thrombotic and hemorrhagic complications. Abnormalities in platelet function are central to these complications, but reports on platelet function in relation to CKD are conflicting, and vary from decreased platelet reactivity to normal or increased platelet responsiveness. The direct effects of uremic toxins on platelet function have been described, with variable findings.MethodsTo help clarify how CKD affects platelet function, we conducted a systematic review and meta-analysis of platelet activity in CKD, with a focus on nondialysis-induced effects. We also performed an extensive literature search for the effects of individual uremic toxins on platelet function.ResultsWe included 73 studies in the systematic review to assess CKD’s overall effect on platelet function in patients; 11 of them described CKD’s effect on ex vivo platelet aggregation and were included in the meta-analysis. Although findings on platelet abnormalities in CKD are inconsistent, bleeding time was mostly prolonged and platelet adhesion mainly reduced. Also, the meta-analysis revealed maximal platelet aggregation was significantly reduced in patients with CKD upon collagen stimulation. We also found that relatively few uremic toxins have been examined for direct effects on platelets ex vivo; ex vivo analyses had varying methods and results, revealing both platelet-stimulatory and inhibitory effects. However, eight of the 12 uremic toxins tested in animal models mostly induced prothrombotic effects.ConclusionsOverall, most studies report impaired function of platelets from patients with CKD. Still, a substantial number of studies find platelet function to be unchanged or even enhanced. Further investigation of platelet reactivity in CKD, especially during different CKD stages, is warranted.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3892-3892
Author(s):  
Shogo Kasuda ◽  
Yoshihiko Sakurai ◽  
Midori Shima ◽  
Masahiro Takeyama ◽  
Katsuhiko Hatake ◽  
...  

Abstract Background: Moderate consumption of alcohol beverages reduces the morbidity from coronary heart disease. Previous studies describing of inhibitory activity of ethanol (EtOH) on platelet function have substantiated this observation. However, the effects of EtOH on thrombin-related platelet activation remains to be fully elucidated, though platelet activation by thrombin is essential for normal hemostasis as well as relevant to pathophysiological conditions of thrombosis. Objectives: The aim of this study is to elucidate the effect of EtOH on α-thrombin-related platelet function by measuring platelet aggregation and intracellular calcium ([Ca2+]i). Materials and Methods: A dual-wavelength spectrofluorometer was used for measurement. α-thrombin, PAR1-activating peptide (AP) (10 μM) or PAR4-AP (25 μM) was added to fura2-AM loaded washed platelet preincubated with or without EtOH (40, 80, 160 and 320 mM). Results and Interpretations: First, the effects of EtOH on 0.5 nM of thrombin-induced platelet activation was assessed. The concentration 0.5 nM used is conceived to activate platelets only via PAR-1. EtOH did not affect platelet aggregation. EtOH inhibited rise of [Ca2+]i dose-dependently. [Ca2+]i peak time at which maximal rise of [Ca2+]i delayed in a dose-dependent manner. Secondly, 10 nM of thrombin was used as an agonist. Stimulation by high concentrations of thrombin (〉 5nM) results in cleavage of both PAR1 and PAR4. The changes in [Ca2+]i showed double-phase curve composed of transient spike and prolonged peak in the absence of EtOH. Although EtOH inhibited neither platelet aggregation nor the first phase of [Ca2+]i increasing, it reduced the second prolonged elevation of [Ca2+]i dose-dependently. To elucidate the inhibiting mechanism of EtOH more precisely, the effects of EtOH on PAR1-AP-induced platelet function were examined. Rise of [Ca2+]i gave a spike form and was almost unchanged even in the presence of high concentrations of EtOH, whereas platelet aggregation was reduced and dissociated in the presence of EtOH. Lastly, the effects of EtOH on PAR4-AP-induced platelet function was examined. Aggregation of PRP was quenched by high concentrations of EtOH but dissociation was not observed contrary to that observed in PAR1-AP-induced aggregation. Further, EtOH inhibited [Ca2+]i rise and delayed [Ca2+]i peak time dose-dependently. Our results provided a possible mechanism by which EtOH inhibits platelet activation. Reduction of the prolonged elevation of [Ca2+]i by high concentrations of thrombin suggested that EtOH inhibits PAR4 signaling not PAR1 since the second prolonged phase of [Ca2+]i is mediated by PAR4. Inhibition of PAR4-induced aggregation and [Ca2+]i elevation by EtOH supported the findings and EtOH might reduce Ca2+ influx through inhibition of PAR4. Furethermore, the difference between the platelet activation mechanisms of low concentrations of thrombin and PAR1-AP was suggested. PAR1-AP can aggregate platelets at least but might fail to activate phospholipase A2 required for sustaining stable aggregation since EtOH abolishes phospholipase A2 and thereby reduces thromboxane A2 generation. On the other, thrombin at low concentrations might have another pathway for activating platelet differently than PAR1-AP. Further characterization of the mechanisms involved in inhibition of platelet activation by EtOH may help develop new strategies to control thrombin-mediated platelet activation.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3513-3513
Author(s):  
Wenxiu Yi ◽  
Wei Li ◽  
Lijie Ren ◽  
Xinliang Mao ◽  
Li Zhu

Abstract The phosphatidylinositol 3' –kinase (PI3K)-Akt signaling pathway has been shown to be critical in modulating platelet function and increasing number of studies have been focusing on the development of PI3K inhibitors to modulate platelet function. We recently identified a novel small molecule compound S14161, namely 8-ethoxy-2-(4-fluorophenyl)-3-nitro-2H-chromene, displaying potent antileukemia and antimyeloma activity via inhibition of the PI3K pathway (Mao et al, Blood, 2011, 117:1986). In the present study, we evaluated the effect of S14161 on platelet activation and the underlying mechanisms. Gel-filtered human platelets were isolated from venous blood of healthy adults and the effect of S14161 on platelet aggregation in response to agonists was determined. Results showed that S14161 inhibited platelet aggregation induced by collagen, convulxin, thrombin, PAR1 agonist peptide SFLLRN, and U46619 in a dose dependent manner (2.5-10μM) with the most striking inhibition for collagen by 89.8% (P<0.001, n=3) and for U46619 by 94.3% (P<0.001, n=3), respectively compared to vehicle-treated samples when 10μM S14161 was used. Flow cytometry studies showed that S14161 inhibits convulxin- or thrombin-induced P-selectin expression and fibrinogen binding of single platelet. S14161 also inhibited platelet spreading on fibrinogen and clot retraction, processes mediated by outside-in signaling. Using a microfluidic chamber we demonstrated that incubation of S14161 decreases platelet adhesion on collagen-coated surface by about 80% at various time points of blood flow in the chambers. Western blot showed that similar to LY294002, the classic PI3K inhibitor, S14161 inhibited phosphorylation of Akt Ser473 and Akt Thr308 in response to collagen, thrombin, or U46619, implying the involvement of PI3K pathway. Additionally, S14161 inhibited MAPK/ERK1/2 phosphorylation. Finally, the effects of S14161 on thrombus formation in vivo were measured using a ferric chloride-induced carotid artery injury model in mice. The intraperitoneal injection of S14161 (2mg/kg) to male C57BL6/J mice significantly extended the first occlusion time (5.05±0.99 min, N=9) compared to the vehicle controls (3.72±0.95 min, N=8) (P<0.05), but did not increase the bleeding time (P>0.05). Taken together, our data showed that S14161 inhibits platelet activation and thrombus formation, and may be developed as a novel therapeutic agent for the prevention of thrombotic disorders. (This study was supported by National Natural Science Foundation of China 81170132 to Li Zhu) Disclosures: No relevant conflicts of interest to declare.


2008 ◽  
Vol 100 (07) ◽  
pp. 01-12 ◽  
Author(s):  
Karen A. Moffat ◽  
Menaka Pai ◽  
Yang Liu ◽  
Jodi Seecharan ◽  
Heather McKay ◽  
...  

SummaryLight transmission platelet aggregation tests are important for diagnosing platelet function defects. However, uncertainties exist about the best procedures to determine aggregation reference intervals. We investigated methods for determining reference intervals for light transmission aggregation tests, using the % maximal aggregation values for prospectively collected data on healthy control samples. Reference intervals for samples tested at 250 x 109 platelets/l were determined by mean ± 2 standard deviations and non-parametric analyses. To establish reference intervals for tests on thrombocytopenic subjects, regression analyses were used to estimate 95% confidence limits for % maximal aggregation, according to sample platelet counts, using data for control samples diluted to match the platelet count of undiluted thrombocytopenic patient platelet-rich plasma samples. For samples tested at 250 x 109 platelets/l, non-parametric analyses described 95% of data for healthy control samples better than mean ± 2 standard deviations. For samples tested at lower counts, to match thrombocytopenic samples, the % maximal aggregation was influenced by platelet count and derived limits were wider at very low platelet counts for almost all agonists. With ristocetin, it proved feasible to test samples with very low platelet counts to exclude Bernard-Soulier syndrome and type 2B von Willebrand disease. Non-parametric analyses should be the preferred method to establish light transmission aggregation reference intervals for samples tested at normal platelet counts. The derived limits for thrombocytopenic samples provide guidance for evaluating thrombocytopenic platelet function disorders, including which agonists to test, based on the sample platelet count.


Sign in / Sign up

Export Citation Format

Share Document