scholarly journals Effect of Incorporation of Different Concentrations of Silver Nanoparticles as an Antimicrobial Agent on the Flexural and Impact Strength of Heat-Cured Denture Base Resin

Author(s):  
Piyali Sarkar ◽  
Sandeep Garg ◽  
Nidhi Mangtani Kalra

Abstract Aim This article evaluates the effect of incorporating different concentrations of silver nanoparticles as an antimicrobial agent on the flexural and impact strength of heat-cured denture base resin. Material and Methods A total of 80 specimens of polymethyl methacrylate resin were fabricated (40 for flexural strength and 40 for impact strength). Specimens were fabricated using stainless steel die of dimension 65 mm × 10 mm × 2.5 mm as per the American Dental Association specification no. 12, and 50 mm × 6 mm × 4 mm as per ISO 1567:1999 for flexural strength and impact strength, respectively, and were divided into four groups (A, B, C, and D) based on the concentrations of silver nanoparticles (0%, 2.5%, 5%, and 10%). The specimens were subjected to three-point bending test and Izod impact tester for testing flexural and impact strength, respectively. Data obtained was compiled and analyzed using one-way analysis of variance and post hoc tests. Results Results showed that for both the properties, maximum strength was observed in group A (control) followed by groups B and C, and minimum was observed in group D. A statistically significant difference in flexural strength was found among all the groups, whereas no statistically significant difference in impact strength was found among any of the groups. Conclusion Within the limitations of this in vitro study, it was concluded that though incorporation of silver nanoparticles exhibited no effect on the impact strength of heat cure denture base resin, it decreased the flexural strength, so it should be used cautiously.

2009 ◽  
Vol 20 (2) ◽  
pp. 132-137 ◽  
Author(s):  
Rafael Leonardo Xediek Consani ◽  
Douglas Duenhas de Azevedo ◽  
Marcelo Ferraz Mesquita ◽  
Wilson Batista Mendes ◽  
Paulo César Saquy

The present study evaluated the effect of repeated simulated microwave disinfection on physical and mechanical properties of Clássico, Onda-Cryl and QC-20 denture base acrylic resins. Aluminum patterns were included in metallic or plastic flasks with dental stone following the traditional packing method. The powder/liquid mixing ratio was established according to the manufacturer's instructions. After water-bath polymerization at 74ºC for 9 h, boiling water for 20 min or microwave energy at 900 W for 10 min, the specimens were deflasked after flask cooling and finished. Each specimen was immersed in 150 mL of distilled water and underwent 5 disinfection cycles in a microwave oven set at 650 W for 3 min. Non-disinfected and disinfected specimens were subjected to the following tets: Knoop hardness test was performed with 25 g load for 10 s, impact strength test was done using the Charpy system with 40 kpcm, and 3-point bending test (flexural strength) was performed at a crosshead speed of 0.5 mm/min until fracture. Data were analyzed statistically by ANOVA and Tukey's test (α= 0.05%). Repeated simulated microwave disinfections decreased the Knoop hardness of Clássico and Onda-Cryl resins and had no effect on the impact strength of QC-20. The flexural strength was similar for all tested resins.


Author(s):  
Sara T. Alzayyat ◽  
Ghadah A. Almutiri ◽  
Jawhara K. Aljandan ◽  
Raneem M. Algarzai ◽  
Soban Q. Khan ◽  
...  

Abstract Objective The aim of this study was to evaluate the effects of the addition of low-silicon dioxide nanoparticles (nano-SiO2) on the flexural strength and elastic modulus of polymethyl methacrylate (PMMA) denture base material. Materials and Methods A total of 50 rectangular acrylic specimens (65 × 10 × 2.5 mm3) were fabricated from heat-polymerized acrylic resin. In accordance with the amount of nano-SiO2, specimens were divided into the following five groups (n = 10 per group): a control group with no added SiO2, and four test groups modified with 0.05, 0.25, 0.5, and 1.0 wt% nano-SiO2 of acrylic powder. Flexural strength and elastic modulus were measured by using a 3-point bending test with a universal testing machine. A scanning electron microscope was used for fracture surface analyses. Data analyses were conducted through analysis of variance and Tukey’s post hoc test (α = 0.05). Results Compared with the control group, flexural strength and modulus of elasticity tended to significantly increase (p ˂ 0.001) with the incorporation of nano-SiO2. In between the reinforced groups, the flexural strength significantly decreased (p ˂ 0.001) as the concentrations increased from 0.25 to 1.0%, with the 1.0% group showing the lowest value. Furthermore, the elastic modulus significantly increased (p ˂ 0.001) at 0.05% followed by 1.0%, 0.25%, 0.5%, and least in control group. Conclusion A low nano-SiO2 addition increased the flexural strength and elastic modulus of a PMMA denture base resin.


2020 ◽  
Vol 14 (01) ◽  
pp. 092-099 ◽  
Author(s):  
Ahmad M. Al-Thobity

Abstract Objective Different polymerization and reinforcement techniques have been tested to enhance the mechanical characteristics of denture base acrylic resins. The goal of the present study was to evaluate the influence of autoclave polymerization techniques with glass fiber reinforcement on the flexural strength and elastic modulus of polymethyl methacrylate denture base resins. Materials and Methods Ninety specimens were fabricated from heat-polymerized acrylic resin and randomly distributed depending on the polymerization technique into three groups (n = 30): water bath polymerization, short-cycle autoclave polymerization, and long-cycle autoclave polymerization. Each group was further divided into three subgroups (n = 10) based on the concentration of glass fiber 0, 2.5, and 5wt%. The flexural strength and elastic modulus were investigated using a universal testing machine. One-way ANOVA and Tukey’s post hoc test were performed to analyze the results (α = 0.05). Results The flexural strength and elastic modulus values were significantly higher in 5wt% glass fiber reinforced long-cycle autoclave group in comparison with the other test groups (p < 0.05). Conclusions The long-cycle autoclave polymerization technique with the glass fiber reinforcement significantly increased the flexural strength and elastic modulus of the denture base resin material.


2017 ◽  
Vol 17 (4) ◽  
pp. 1-8 ◽  
Author(s):  
Rama Alla ◽  
K Swamy ◽  
Ritu Vyas ◽  
Anusha Konakanchi ◽  
Vineeth Guduri ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Mohammed M. Gad ◽  
Ahmad M. Al-Thobity ◽  
Ahmed Rahoma ◽  
Reem Abualsaud ◽  
Fahad A. Al-Harbi ◽  
...  

This study is aimed at evaluating the hybrid reinforcement effects of zirconium oxide nanoparticles (nano-ZrO2) and glass fibers (GFs) at different ratios on the flexural and impact strengths of a polymethylmethacrylate (PMMA) denture base. A total of 160 specimens were fabricated from heat-polymerized acrylic resins using the water bath technique. For the control group, the specimens did not receive any additions; for the test group, different concentrations of nano-ZrO2/GFs at 5% of the PMMA polymer were added. The concentrations of nano-ZrO2/GFs were as follows: 5%–0%, 4%–1%, 3%–2%, 2.5%–2.5%, 2%–3%, 1%–4%, and 0%–5%. The flexural strength was measured using the three-point bending test. The impact strength was measured using the Charpy impact test. Results were tabulated and analyzed using one-way analysis of variance (ANOVA) and the Tukey–Kramer multiple comparison test (p≤0.05). The flexural and impact strengths of PMMA-nano-ZrO2 + GF composites were significantly improved when compared with those of pure PMMA (p<0.05). The maximum flexural strength (94.05 ± 6.95 MPa) and impact strength (3.89 ± 0.46 kJ/m2) were obtained with PMMA (2.5%)/nano-ZrO2 + 2.5% GF mixtures and could be used for removable prosthesis fabrication.


2020 ◽  
Vol 18 (44) ◽  
pp. 25-32
Author(s):  
Samar Abbas Hannon ◽  
Wafaa A. Hussain ◽  
Selma M. Hussain

This paper displays the effect of uncoated and coated chopped carbon fibers with alumina Al2O3 or Tri calcium phosphate (TCP) on the impact strength of acrylic poly methyl methacrylate (PMMA) denture base resin. To improve bonding between carbon fibers and coating materials powders, the surface of carbon fibers has been treated with Para amino benzoic acid (C9H10N2O3) and poly vinyl alcohol (PVA) was also used. The morphology of the coating layers has been examined by field emission scanning electron microscope (FE-SEM). From the results, PMMA reinforced with uncoated chopped carbon fiber has high impact strength value but still have bad aesthetic.  Samples prepared by coated carbon fiber with Al2O3 or TCP have high impact strength values when compared to control group with good aesthetic. Impact strength was increased in samples when PVA increased and fibers amount decreased.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012023
Author(s):  
Teba M. Hameed ◽  
Balqees M. Al-Dabbagh ◽  
Ragdaa K. Jasim

Abstract Materials and Methods: In total, 90 specimens were prepared to be used in the study. The specimens were divided into (3) main groups depended on the presence of sisal fibers powder, first group (30) specimens of heat cure PMMA without additives (control), second and third experimental groups of 60 specimens of heat cure PMMA with salinized sisal fibers powder with two different weight percentages (1 and 3%) wt. Three point bending test was used to measure the flexural strength of the specimens, while the impact strength was done by impact testing Charpy’s machine and tensile test was performed according to ASTM (D-638). Data analysis was performed using (ANOVA) test. The results of this study refer to a highly significant in the flexural strength and tensile strength of specimens reinforced with sisal fibers powder compared with control specimens. Non-significant difference was detected in impact strength among the reinforced groups and control gro. Reinforcement of acrylic resin with natural sisal fibers powder affects its flexural strength and tensile strength with non-significant in impact strength.


Sign in / Sign up

Export Citation Format

Share Document