Invasive Pituitary Adenoma-Derived Tumor-Associated Fibroblasts Promote Tumor Progression both In Vitro and In Vivo

2017 ◽  
Vol 126 (04) ◽  
pp. 213-221 ◽  
Author(s):  
Liang Lv ◽  
Shizhen Zhang ◽  
Yu Hu ◽  
Peizhi Zhou ◽  
Ling Gao ◽  
...  

AbstractTumor-associated fibroblasts are the most abundant population in tumor stroma and impact on tumor initiation and progression. However, the biological function of tumor-associated fibroblasts in pituitary adenomas has not been fully elucidated to date. So, this study aims to clarify the function and significance of primary cultured pituitary adenoma-derived tumor-associated fibroblasts on rat pituitary adenoma cells. We identified primary cultured tumor-associated fibroblasts and normal fibroblasts based on the expression of α-smooth muscle actin as well as morphology. Furthermore, we investigated cell biological influences on rat pituitary adenoma cells through indirectly co-culturing tumor-associated fibroblasts with GH3 cells and subcutaneous xenograft model. All sorts of fibroblasts showed positive staining for α-smooth muscle actin. But α-smooth muscle actin and vascular endothelial growth factor highly expressed in invasive pituitary adenoma-derived tumor-associated fibroblasts compared to non-invasive pituitary adenoma-derived tumor-associated fibroblasts and normal fibroblasts. Besides, invasive pituitary adenoma-derived tumor-associated fibroblasts promoted the proliferation of GH3 cells in vitro as well as tumor growth in vivo. Finally, vascular endothelial growth factor was highly expressed in tumor specimens co-injected with invasive pituitary adenoma-derived tumor-associated fibroblasts. Our results suggested that invasive pituitary adenoma-derived tumor-associated fibroblasts displayed apparent growth promotion effects on rat pituitary cells both in vitro and in vivo accompanied by over-expression of vascular endothelial growth factor in invasive pituitary adenoma-derived tumor-associated fibroblasts and tumor specimens.

Author(s):  
Sunil Abraham ◽  
Geetha Sanjay ◽  
Noushin Abdul Majiyd ◽  
Amutha Chinnaiah

Abstract Background In this study, Vascular Endothelial Growth Factor 121 expressed abundantly in endometrial stromal cells is encapsulated with poly-l-lactide and characterized the properties for endometrial angiogenesis. We studied the migration, proliferation and the protein levels of human immortalized endometrium stromal cells after treating the cells with recombinant Vascular Endothelial Growth Factor (200 and 500 nanogram), and poly-l-lactide loaded Vascular Endothelial Growth Factor 121 (day 1, 20 and 30). The present study explains endometrium angiogenesis because endometrium plays an important role in pregnancy. Results Migration and proliferation studies in endometrium cells proved the efficiency of Vascular Endothelial Growth Factor and poly-l-lactide loaded Vascular Endothelial Growth Factor 121. This proliferated and increased the migration of the cells in vitro and also activated the Protein kinase B, Phosphatidylinositol-4, 5-Bisphosphate 3-Kinase Catalytic Subunit Beta, α-Smooth muscle actin and vascular endothelial growth factor receptor 2 pathways. Western blot analysis showed the increased expression levels of kinases, smooth muscle actin and vascular endothelial growth factor receptor 2 after the treatment with Vascular Endothelial Growth Factor and poly-l-lactide loaded Vascular Endothelial Growth Factor 121 particles in comparison to the control group. The elevated levels of α-Smooth muscle actin in endometrium cells with Vascular Endothelial Growth Factor prove the regulation of angiogenesis in vitro. Conclusion Endometrium thickness is one of the important factors during implantation of embryo and pregnancy. Slow release of VEGF from PLA encapsulated microparticle further controls the endothelial cell proliferation and migration and helps in the promotion of angiogenesis. The combined effect studied in vitro could be used as a pro-angiogenic drug on further in vivo confirmation.


2003 ◽  
Vol 55 (2) ◽  
pp. 119-124 ◽  
Author(s):  
Michael D. Mueller ◽  
Elizabeth A. Pritts ◽  
Charles J. Zaloudek ◽  
Ekkehard Dreher ◽  
Robert N. Taylor

Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 4150-4166 ◽  
Author(s):  
Dmitry Gabrilovich ◽  
Tadao Ishida ◽  
Tsunehiro Oyama ◽  
Sophia Ran ◽  
Vladimir Kravtsov ◽  
...  

Abstract Defective function of dendritic cells (DC) in cancer has been recently described and may represent one of the mechanisms of tumor evasion from immune system control. We have previously shown in vitro that vascular endothelial growth factor (VEGF), produced by almost all tumors, is one of the tumor-derived factors responsible for the defective function of these cells. In this study, we investigated whether in vivo infusion of recombinant VEGF could reproduce the observed DC dysfunction. Continuous VEGF infusion, at rates as low as 50 ng/h (resulting in serum VEGF concentrations of 120 to 160 pg/mL), resulted in a dramatic inhibition of dendritic cell development, associated with an increase in the production of B cells and immature Gr-1+ myeloid cells. Infusion of VEGF was associated with inhibition of the activity of the transcription factor NF-κB in bone marrow progenitor cells. Experiments in vitro showed that VEGF itself, and not factors released by VEGF-activated endothelial cells, affected polypotent stem cells resulting in the observed abnormal hematopoiesis. These data suggest that VEGF, at pathologically relevant concentrations in vivo, may exert effects on pluripotent stem cells that result in blocked DC development as well as affect many other hematopoietic lineages.


2006 ◽  
Vol 14 (3) ◽  
pp. 237-248 ◽  
Author(s):  
Anne Schänzer ◽  
Frank-Peter Wachs ◽  
Daniel Wilhelm ◽  
Till Acker ◽  
Christiana Cooper-Kuhn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document