Motor neuropathy and alacrima: oligosymptomatic triple A syndrome

2006 ◽  
Vol 37 (03) ◽  
Author(s):  
K Brockmann ◽  
K Koehler ◽  
M Krumbholz ◽  
J Gärtner ◽  
A Hübner
2019 ◽  
pp. 1-8 ◽  
Author(s):  
Nasser Mohammed ◽  
Yi-Chieh Hung ◽  
Thomas J. Eluvathingal Muttikkal ◽  
Roy C. Bliley ◽  
Zhiyuan Xu ◽  
...  

OBJECTIVEThe motor root of the trigeminal nerve runs close to the sensory root and receives considerable radiation during Gamma Knife radiosurgery (GKRS) for trigeminal neuralgia (TN). The object of this study was to evaluate via MRI the changes in the muscles of mastication before and after upfront GKRS in patients with idiopathic TN.METHODSIn this single-institution retrospective cohort study, all patients with idiopathic unilateral TN treated with primary GKRS at the University of Virginia in the period from 2007 to 2017 were included provided that they had pre- and post-GKRS MRI data. The thicknesses of the temporalis, pterygoid, and masseter muscles were measured on both pre- and post-GKRS MRI in a blinded fashion. Changes in the muscles like fatty infiltration, MRI signal, or atrophy were noted.RESULTSAmong the 68 patients eligible for inclusion in the study, 136 temporalis muscles, 136 medial pterygoid muscles, 136 lateral pterygoid muscles, and 136 masseter muscles were assessed. A subset of patients was found to have muscle atrophy even prior to GKRS. Pre-GKRS atrophy of the masseter, medial pterygoid, lateral pterygoid, and temporalis muscles was seen in 18 (26%), 16 (24%), 9 (13%), and 16 (24%) patients, respectively. Logistic regression analysis showed that distribution of pain in the V3 territory (p = 0.01, OR 5.43, 95% CI 1.46–20.12) and significant pain on chewing (p = 0.02, OR 5.32, 95% CI 1.25–22.48) were predictive of pre-GKRS atrophy. Reversal of atrophy of these muscles occurred after GKRS in a majority of the patients. The incidence of new-onset permanent post-GKRS muscle atrophy was 1.5%. The median follow-up was 39 months (range 6–108 months).CONCLUSIONSA subset of patients with TN with significant pain on chewing have pre-GKRS disuse atrophy of the muscles of mastication. A reversal of the atrophy occurs in a majority of the patients following GKRS. New-onset motor neuropathy post-GKRS was rare.


2020 ◽  
Vol 25 (43) ◽  
pp. 4560-4569 ◽  
Author(s):  
Yichen Lee ◽  
Bo H. Lee ◽  
William Yip ◽  
Pingchen Chou ◽  
Bak-Sau Yip

Neurofilaments: light, medium, and heavy (abbreviated as NF-L, NF-M, and NF-H, respectively), which belong to Type IV intermediate filament family (IF), are neuron-specific cytoskeletal components. Neurofilaments are axonal structural components and integral components of synapses, which are important for neuronal electric signal transmissions along the axons and post-translational modification. Abnormal assembly of neurofilaments is found in several human neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), infantile spinal muscular atrophy (SMA), and hereditary sensory-motor neuropathy (HSMN). In addition, those pathological neurofilament accumulations are known in α-synuclein in Parkinson’s disease (PD), Aβ and tau in Alzheimer’s disease (AD), polyglutamine in CAG trinucleotide repeat disorders, superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TDP43), neuronal FUS proteins, optineurin (OPTN), ubiquilin 2 (UBQLN2), and dipeptide repeat protein (DRP) in amyotrophic lateral sclerosis (ALS). When axon damage occurs in central nervous disorders, neurofilament proteins are released and delivered into cerebrospinal fluid (CSF), which are then circulated into blood. New quantitative analyses and assay techniques are well-developed for the detection of neurofilament proteins, particularly NF-L and the phosphorylated NF-H (pNF-H) in CSF and serum. This review discusses the potential of using peripheral blood NF quantities and evaluating the severity of damage in the nervous system. Intermediate filaments could be promising biomarkers for evaluating disease progression in different nervous system disorders.


Neurology ◽  
2010 ◽  
Vol 74 (6) ◽  
pp. 502-506 ◽  
Author(s):  
S. J. Kolb ◽  
P. J. Snyder ◽  
E. J. Poi ◽  
E. A. Renard ◽  
A. Bartlett ◽  
...  

Author(s):  
Elsa Cortés-Montero ◽  
María Rodríguez-Muñoz ◽  
Pilar Sánchez-Blázquez ◽  
Javier Garzón-Niño

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Hai-Lin Dong ◽  
Jia-Qi Li ◽  
Gong-Lu Liu ◽  
Hao Yu ◽  
Zhi-Ying Wu

AbstractSorbitol dehydrogenase gene (SORD) has been identified as a novel causative gene of recessive forms of hereditary neuropathy, including Charcot–Marie–Tooth disease type 2 and distal hereditary motor neuropathy (dHMN). Our findings reveal two novel variants (c.404 A > G and c.908 + 1 G > C) and one known variant (c.757delG) within SORD in four Chinese dHMN families. Ex vivo cDNA polymerase chain reaction confirmed that c.908 + 1 G > C variant was associated with impaired splicing of the SORD transcript. In vitro cell functional studies showed that c.404 A > G variant resulted in aggregate formation of SORD and low protein solubility, confirming the pathogenicity of SORD variants. We have provided more evidence to establish SORD as a causative gene for dHMN.


Sign in / Sign up

Export Citation Format

Share Document