Public Sector Experiments with Social Media Data Mining

2016 ◽  
pp. 67-97
Author(s):  
Helen Kennedy
2018 ◽  
Vol 03 (03) ◽  
pp. 1850003 ◽  
Author(s):  
Jared Oliverio

Big Data is a very popular term today. Everywhere you turn companies and organizations are talking about their Big Data solutions and Analytic applications. The source of the data used in these applications varies. However, one type of data is of great interest to most organizations, Social Media Data. Social Media applications are used by a large percentage of the world’s population. The ability to instantly connect and reach other people and companies over distributed distances is an important part of today’s society. Social Media applications allow users to share comments, opinions, ideas, and media with friends, family, businesses, and organizations. The data contained in these comments, ideas, and media are valuable to many types of organizations. Through Data Mining and Analysis, it is possible to predict specific behavior in users of the applications. Currently, several technologies aid in collecting, analyzing, and displaying this data. These technologies allow users to apply this data to solve different problems, in different organizations, including the finance, medicine, environmental, education, and advertising industries. This paper aims to highlight the current technologies used in Data Mining and Analyzing Social Media data, the industries using this data, as well as the future of this field.


Author(s):  
Diya Li ◽  
Harshita Chaudhary ◽  
Zhe Zhang

By 29 May 2020, the coronavirus disease (COVID-19) caused by SARS-CoV-2 had spread to 188 countries, infecting more than 5.9 million people, and causing 361,249 deaths. Governments issued travel restrictions, gatherings of institutions were cancelled, and citizens were ordered to socially distance themselves in an effort to limit the spread of the virus. Fear of being infected by the virus and panic over job losses and missed education opportunities have increased people’s stress levels. Psychological studies using traditional surveys are time-consuming and contain cognitive and sampling biases, and therefore cannot be used to build large datasets for a real-time depression analysis. In this article, we propose a CorExQ9 algorithm that integrates a Correlation Explanation (CorEx) learning algorithm and clinical Patient Health Questionnaire (PHQ) lexicon to detect COVID-19 related stress symptoms at a spatiotemporal scale in the United States. The proposed algorithm overcomes the common limitations of traditional topic detection models and minimizes the ambiguity that is caused by human interventions in social media data mining. The results show a strong correlation between stress symptoms and the number of increased COVID-19 cases for major U.S. cities such as Chicago, San Francisco, Seattle, New York, and Miami. The results also show that people’s risk perception is sensitive to the release of COVID-19 related public news and media messages. Between January and March, fear of infection and unpredictability of the virus caused widespread panic and people began stockpiling supplies, but later in April, concerns shifted as financial worries in western and eastern coastal areas of the U.S. left people uncertain of the long-term effects of COVID-19 on their lives.


2019 ◽  
Vol 8 (4) ◽  
pp. 8574-8577

The unavoidable utilization of online networking like Facebook is giving exceptional measures of social information. Information mining methods have been broadly used to separate learning from such information. The character of the person is predicted whether he is good or not by using data mining techniques from user self-made data. Mining methods are being broadly using to separate learning from such information, main examples for them are network discovery and slant investigation. Notwithstanding, there is still a lot of room to investigate as far as the occasion information (i.e., occasions with timestamps, for example, posting an inquiry, altering an article in Wikipedia, and remarking on a tweet. These occasions react users' personal conduct standards and working forms in the social media websites.


2021 ◽  
pp. 174-180
Author(s):  
Cahyadi Kurniawan ◽  
Achmad Nurmandi ◽  
Isnaini Muallidin ◽  
Danang Kurniawan ◽  
Salahudin

Sign in / Sign up

Export Citation Format

Share Document