Assessment of the Elastic-Viscoplastic Behavior of Soft Soils Improved with Vertical Drains Capturing Reduced Shear Strength of a Disturbed Zone

Author(s):  
Babak Azari ◽  
Behzad Fatahi ◽  
Hadi Khabbaz
2020 ◽  
Vol 53 (4) ◽  
pp. 475-522
Author(s):  
Michael Long

The objectives of this paper are to provide an update on work done and the development of knowledge on Irish compressible soils since Eamon Hanrahan's book on the topic. Eamon subdivided these soils into three categories; namely, alluvial, estuarine and lake-bed deposits, and he termed them ‘troublesome soils’. A brief background geology will initially be presented. The complexity of the deposits both on a macro- and micro-scale will be highlighted. Sites that have been well studied will be summarized and the engineering solutions used to construct on these sites will be reviewed. Although work on these sites presents a significant engineering achievement, some important lessons were learned. The remainder of the paper deals with how these lessons might be addressed in the future; for example, how to use modern ground investigation techniques to best characterize these complex deposits and what are the best techniques for examining important detailed aspects of 1D consolidation behaviour such as the identification of the apparent preconsolidation stress, the sometimes rapid rate of consolidation and creep, and also how to characterize the undrained shear strength of the soils. The work will be benchmarked against experience of the behaviour of Scandinavian soft soils.


2013 ◽  
Vol 663 ◽  
pp. 3-7
Author(s):  
Min Zhao ◽  
Wei Ping Cao ◽  
Qi Chao Shi

The rapid development of China’s economics makes it urgent to widen the existing highways especially those located in the south-eastern coastal areas over thick soft soils. Adding a new embankment adjacent to the existing highway embankment is a cost effective choice compared with the traditional methods to build another new one and can reduce the heavy traffic pressure. However, it may also cause some engineering problems including the excessive settlements settlements, road cracks, excessive tensile stresses on the pavement even local or global instability of embankments. So some proper measures should be taken to solve the problems caused by widening is of great importance in engineering practice. A numerical analysis was performed to investigate the effect of different kinds of soft soil treatments including rigid piles, stone columns and prefabricated vertical drains (PVDs) usually used in highway widening projects located in the thick soft soils. It was found that the rigid piles can effectively reduce the additional settlements of the existing embankment induced by widening as well as the settlements of the widened embankment. While the stone columns and PVDs play little role in controlling the additional settlements caused by widening.


2008 ◽  
Vol 8 (2) ◽  
pp. 105-113 ◽  
Author(s):  
Li-Zhong Wang ◽  
Kai-lun Shen ◽  
Sheng-Hua Ye

2009 ◽  
Vol 46 (3) ◽  
pp. 270-280 ◽  
Author(s):  
Cholachat Rujikiatkamjorn ◽  
Buddhima Indraratna

A system of vertical drains with surcharge preloading is an effective method for promoting radial drainage and accelerated soil consolidation. This study presents a procedure for the design of vertical drains that significantly extends the previous technique proposed by the authors to include: (i) a linear reduction of lateral permeability in the smear zone, (ii) the effect of overlapping smear zones in a closely spaced drain network, and (iii) the gain in undrained shear strength due to consolidation. Design examples are provided for both single stage and multi-stage embankment construction demonstrating the convenient use of the proposed solutions in practical situations.


2020 ◽  
Vol 6 (1) ◽  
pp. 164-173 ◽  
Author(s):  
F. Kassou ◽  
J. Ben Bouziyane ◽  
A. Ghafiri ◽  
A. Sabihi

The overloads of structures or embankments built on clayey soft ground are generally applied gradually, respecting a specific phasing. This phasing on construction allows the undrained shear strength of clay increasing over consolidation in order to avoid the risk of collapse during loading. In this work, the undrained shear strength of clay over the consolidation was estimated following SHANSEP method of which parameters proposed by eight researchers have been employed, as well as the slope stability analysis of embankments on soft soils during staged construction. Assessment of factor of safety for slope stability was conducted basing on the Bishop method. Additionally, the variations of undrained shear strength and factor of safety were presented. In order to validate the methods discussed in this study, slope stability analysis of five embankments constructed on clayey soft soils improved by the vertical drain technique in a high-speed railway construction project in Morocco was performed. For these embankments, field measurements about lateral displacement are presented.  It was found that some of the adopted methods is in a good agreement with field measurements. Hence, generalization of these methods to many soft ground cases can be proposed.


Sign in / Sign up

Export Citation Format

Share Document